1F= 1+ 1/2 + 1/2^2 + 1/2^3 + … + 1/2^99 + 1/2^100 + 1/2^100
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta chia thành hai vế (1) và (2)
Số số hạng (1) là :
( 101 - 1 ) : 1 + 1 = 101 ( số )
Tổng (1) là :
( 101 + 1 ) x 101 : 2 = 5151
Tự tính tiếp
\(1+\left(1+2\right)+\left(1+2+3\right)+...+\left(1+2+3+...+99+100\right)\)
\(=\left(1+1+1+...+1\right)+\left(2+2+...+2\right)+\left(3+...+3\right)+...+\left(99+99\right)+100\)
\(=1.100+2.99+3.98+...+99.2+100.1\)
Do đó kết quả của phép tính cần tìm là:
\(\frac{1.100+2.99+...+99.2+100.1}{\left(1.100+2.99+...+99.2+100.1\right).2013}=\frac{1}{2013}\)
Bài 1:
a: \(2A=2^{101}+2^{100}+...+2^2+2\)
\(\Leftrightarrow A=2^{100}-1\)
b: \(3B=3^{101}+3^{100}+...+3^2+3\)
\(\Leftrightarrow2B=3^{100}-1\)
hay \(B=\dfrac{3^{100}-1}{2}\)
c: \(4C=4^{101}+4^{100}+...+4^2+4\)
\(\Leftrightarrow3C=4^{101}-1\)
hay \(C=\dfrac{4^{101}-1}{3}\)
A = 1*2*3 + 2*3*4 + 3*4*5 ... + 99*100*101
=> 4A = 1*2*3*4 + 2*3*4*4 + 3*4*5*4 + ... +99*100*101*4
=> 4A = 1*2*3*4 + 2*3*4*(5 - 1) + 3*4*5*( 6 - 2) + ... + 99*100*101*(102 - 98)
=> 4A = 1*2*3*4 + 2*3*4*5 - 1*2*3*4 + 3*4*5*6 - 2*3*4*5 + ... + 99*100*101*102 - 98*99*100*101
=> 4A = 99*100*101*102
=> 4A = 101989800
=> A = 25497450
tu 1 den 100 co 100 so
nen tong cac so do la : ( 100 + 1 ) x 100 : 2 = 5050
nhin tong tren , ta thay moi so duoc lap lai 4 lan nen tong do la : 5050 x 4 = 20200
dap so : 20200
Tính có bao nhiêu số hạng: (100-1):1+1 x 5= 500(số)
Tính tổng của dãy số trên: (100+10) x 500 :2 x 5 =137500
\(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{100}\)
\(=\left(1+\frac{1}{100}\right)+\left(\frac{1}{2}+\frac{1}{99}\right)+....+\left(\frac{1}{50}+\frac{1}{51}\right)\)
\(=\frac{101}{1.100}+\frac{101}{2.99}+....+\frac{101}{50.51}\)
\(=101.\left(\frac{1}{1.100}+\frac{1}{2.99}+...+\frac{1}{50.51}\right)\)
Vế mẫu :
\(\frac{1}{1.100}+\frac{1}{2.99}+......+\frac{1}{1.100}\)
\(=2\left(\frac{1}{1.100}+\frac{1}{2.99}+....+\frac{1}{50.51}\right)\)
Vậy kết quả là :
\(\frac{101}{2}\)
Tử số = 1 + 1/2 + 1/3 + 1/4 + ... + 1/100
= (1 + 1/100) + (1/2 + 1/99) + ... + (1/50 + 1/51)
= 101/1.100 + 101/2.99 + ... + 101/50.51
= 101.(1/1.100 + 1/2.99 + ... + 1/50.51)
Mẫu số = 1/1.100 + 1/2.99 + 1/3.98 + ... + 1/99.2 + 1/100.1
= 2.(1/1.100 + 1/2.99 + ... + 1/50.51)
=> phân số đề bài cho = 101/2
ta có A = 1+(1+2)+....+(1+2+..+100) = 1 x 100 + 2 x 99 + ...+100 x 1
\(\Rightarrow\frac{A}{100.1+99.2+...+1.100}=\frac{100.1+99.2+..+1.100}{100.1+99.2+..+100.1}=1\)