K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 7 2016

|4x-8| - x = 2

|4x - 8| = 2+x

Th1:

4x - 8 = 2+x

4x -x = 2 +8

3x = 10

x= 10/3

Th2:

4x -8 = -(2+x)

4x -8 = -2 -x

4x +x = -2 +8

5x = 6

x= 6/5

Vậy x= 10/3 và x= 6/5

19 tháng 2 2018

Ta thấy \(\left|x+\frac{1}{8}\right|\ge0\forall x;\left|x+\frac{2}{8}\right|\ge0\forall x;\left|x+\frac{5}{8}\right|\ge0\forall x\)

\(\Rightarrow\left|x+\frac{1}{8}\right|+\left|x+\frac{2}{8}\right|+\left|x+\frac{5}{8}\right|\ge0\)

\(\Rightarrow4x\ge0\Rightarrow x\ge0\)

\(\Rightarrow x+\frac{1}{8}+x+\frac{2}{8}+x+\frac{5}{8}=4x\)

\(\Rightarrow3x+1=4x\)

=> x = 1 (t/m)

Vậy x=1

6 tháng 11 2023

a) \(4x^3-36x=0\)

\(\Leftrightarrow4x\left(x^2-9\right)=0\)

\(\Leftrightarrow4x\left(x+3\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}4x=0\\x+3=0\\x-3=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\\x=3\end{matrix}\right.\)

b) \(\left(x-2\right)^2-4x+8=0\)

\(\Leftrightarrow\left(x-2\right)^2-\left(4x-8\right)=0\)

\(\Leftrightarrow\left(x-2\right)^2-4\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-2-4\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-6=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=6\end{matrix}\right.\)

c) \(x^3+\left(x+3\right)\left(x-9\right)=-27\)

\(\Leftrightarrow\left(x^3+27\right)+\left(x+3\right)\left(x-9\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x^2-3x+9\right)+\left(x+3\right)\left(x-9\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x^2-3x+9+x-9\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x^2-2x\right)=0\)

\(\Leftrightarrow x\left(x+3\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+3=0\\x-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\\x=2\end{matrix}\right.\)

(x-2)^2-4x+8=0

=>(x-2)^2-4(x-2)=0

=>(x-2)(x-2-4)=0

=>(x-2)(x-6)=0

=>x=2 hoặc x=6

7 tháng 10 2023

`(x-2)^2 -4x+8=0`

`<=> (x-2)^2 -(4x-8)=0`

`<=> (x-2)^2 - 4(x-2)=0`

`<=> (x-2)(x-2-4)=0`

`<=>(x-2)(x-6)=0`

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-4=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=4\end{matrix}\right.\)

29 tháng 11 2023

a: \(x^3-4x^2-x+4=0\)

=>\(\left(x^3-4x^2\right)-\left(x-4\right)=0\)

=>\(x^2\left(x-4\right)-\left(x-4\right)=0\)

=>\(\left(x-4\right)\left(x^2-1\right)=0\)

=>\(\left[{}\begin{matrix}x-4=0\\x^2-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x^2=1\end{matrix}\right.\Leftrightarrow x\in\left\{2;1;-1\right\}\)

b: Sửa đề: \(x^3+3x^2+3x+1=0\)

=>\(x^3+3\cdot x^2\cdot1+3\cdot x\cdot1^2+1^3=0\)

=>\(\left(x+1\right)^3=0\)

=>x+1=0

=>x=-1

c: \(x^3+3x^2-4x-12=0\)

=>\(\left(x^3+3x^2\right)-\left(4x+12\right)=0\)

=>\(x^2\cdot\left(x+3\right)-4\left(x+3\right)=0\)

=>\(\left(x+3\right)\left(x^2-4\right)=0\)

=>\(\left(x+3\right)\left(x-2\right)\left(x+2\right)=0\)

=>\(\left[{}\begin{matrix}x+3=0\\x-2=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=2\\x=-2\end{matrix}\right.\)

d: \(\left(x-2\right)^2-4x+8=0\)

=>\(\left(x-2\right)^2-\left(4x-8\right)=0\)

=>\(\left(x-2\right)^2-4\left(x-2\right)=0\)

=>\(\left(x-2\right)\left(x-2-4\right)=0\)

=>(x-2)(x-6)=0

=>\(\left[{}\begin{matrix}x-2=0\\x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=6\end{matrix}\right.\)

 

11 tháng 12 2023

a) $(x-3)^2-(x+2)(x-2)=-5$

$\Rightarrow x^2-2\cdot x\cdot3+3^2-(x^2-2^2)=-5$

$\Rightarrow x^2-6x+9-(x^2-4)=-5$

$\Rightarrow x^2-6x+9-x^2+4=-5$

$\Rightarrow-6x+13=-5$

$\Rightarrow-6x=-18$

$\Rightarrow x=3$

b) $x^3-2x^2-4x+8=0$

$\Rightarrow(x^3-2x^2)-(4x-8)=0$

$\Rightarrow x^2(x-2)-4(x-2)=0$

$\Rightarrow (x^2-4)(x-2)=0$

$\Rightarrow (x^2-2^2)(x-2)=0$

$\Rightarrow (x-2)(x+2)(x-2)=0$

$\Rightarrow (x-2)^2(x+2)=0$

\(\Rightarrow\left[{}\begin{matrix}x-2=0\\x+2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)

$\text{#}Toru$