Cho a-b=1. Tính M= \(a^2\cdot\left(a+1\right)-b^2\cdot\left(b+1\right)+ab-3ab\cdot\left(a-b+1\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(A=\dfrac{3}{4}.\dfrac{8}{9}...\dfrac{9999}{10000}\)
\(=\dfrac{1.3}{2.2}.\dfrac{2.4}{3.3}...\dfrac{99.101}{100.100}\)
\(=\dfrac{1.2...99}{2.3...100}.\dfrac{3.4...101}{2.3...100}\)
\(=\dfrac{1}{100}.\dfrac{101}{2}\)
\(=\dfrac{101}{200}\)
\(A=\left(a^2+b^2-c^2\right)^2-\left(a^2-b^2+c^2\right)^2-4a^2b^2\)
\(=\left(a^2+b^2-c^2+a^2-b^2+c^2\right)\left(a^2+b^2-c^2-a^2+b^2-c^2\right)-4a^2b^2\)
\(=2a^2.2b^2-4a^2b^2=0\)
\(C=\left(2-6x\right)^2+\left(2-5x\right)^2+2\left(6x-2\right)\left(2-5x\right)\)
\(=\left[\left(2-6x\right)+\left(2-5x\right)\right]^2\)
\(=\left[4-11x\right]^2\)
\(=16-88x+121x^2\)
chúc bn học tốt
\(b,\)\(B=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)
\(\Rightarrow B=1.\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)
\(\Rightarrow B=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)
\(\Rightarrow B=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)
\(\Rightarrow B=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)
\(\Rightarrow B=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)
\(\Rightarrow B=\left(2^{16}-1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)
\(\Rightarrow B=\left(2^{32}-1\right)\left(2^{32}+1\right)-2^{64}\)
\(\Rightarrow B=2^{64}-1-2^{64}=-1\)
a) Đặt \(A=\left(\frac{1}{2}+1\right).\left(\frac{1}{4}+1\right).\left(\frac{1}{16}+1\right)...\left(1+\frac{1}{2^{2n}}\right)\)
Rút gọn: \(A=\frac{2+1}{2}.\frac{4+1}{4}.\frac{16+1}{16}...\frac{2^{2.n}+1}{2^{2.n}}=\frac{2^{2.0}+1}{2^{2.0}}.\frac{2^{2.1}+1}{2^{2.1}}.\frac{2^{2.2}+1}{2^{2.2}}...\frac{2^{2.n}+1}{2^{2.n}}\)
\(\Rightarrow A=\frac{\left(2^{2.0}+1\right).\left(2^{2.1}+1\right).\left(2^{2.2}+1\right)...\left(2^{2.n}+1\right)}{2^{2.0}.2^{2.1}.2^{2.2}...2^{2.n}}.\)
b) Đặt \(B=\left(2+1\right).\left(2^2+1\right).\left(2^4+1\right).\left(2^8+1\right).\left(2^{16}+1\right).\left(2^{32}+1\right)-2^{64}\)
\(\Leftrightarrow B=\left(2-1\right).\left(2+1\right).\left(2^2+1\right)...\left(2^{32}+1\right)-2^{64}=\left(2^2-1\right).\left(2^2+1\right)...\left(2^{32}+1\right)-2^{64}\)
\(\Leftrightarrow B=\left(2^4-1\right).\left(2^4+1\right).\left(2^8+1\right)...\left(2^{32}+1\right)-2^{64}=\left(2^8-1\right).\left(2^8+1\right)...\left(2^{32}+1\right)-2^{64}\)
\(\Leftrightarrow B=\left(2^{16}-1\right).\left(2^{16}+1\right).\left(2^{32}+1\right)-2^{64}=\left(2^{32}-1\right).\left(2^{32}+1\right)-2^{64}\)
\(\Leftrightarrow B=2^{64}-1-2^{64}=-1\)Vậy B =-1.
\(a,2\left(5x+1\right)-7\left(3x-2\right)=4\left(2x-1\right)+3\left(2-x\right)\)
\(\Leftrightarrow10x+2-21x+14=8x-4+6-3x\)
\(\Leftrightarrow-16x=-14\)
\(\Rightarrow x=\dfrac{7}{8}\)
\(b,-4\left(\dfrac{1}{2}x-3\right)+\dfrac{7}{2}\left(2x-1\right)+x=5x\left(1-x\right)\)
\(\Leftrightarrow-2x+12+7x-\dfrac{7}{2}+x=5x-5x^2\)
\(\Leftrightarrow5x^2+x+\dfrac{17}{2}=0\)
Cái này không biết tách kiểu gì cho vừa nên bạn nhấn máy tính nhé
Mode 5 3 rồi lần lượt điền vào theo thứ tự trên thì
\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{10}+\dfrac{13i}{10}\\x=-\dfrac{1}{10}-\dfrac{13i}{10}\end{matrix}\right.\)
\(a,4x^2-\left(3x+1\right)\left(2x-1\right)=2\left(x-3\right)^2\)
\(\Leftrightarrow4x^2-\left(6x^2-3x+2x-1\right)=2\left(x^2-6x+9\right)\)
\(\Leftrightarrow4x^2-6x^2+x+1-2x^2+12x-18=0\)
\(\Leftrightarrow-4x^2+13x-17=0\)
\(\Leftrightarrow-4\left(x^2-\dfrac{13}{4}x+\dfrac{169}{64}\right)-\dfrac{103}{16}=0\)
\(\Leftrightarrow-4\left(x-\dfrac{13}{8}\right)^2=\dfrac{103}{16}\)
\(\Leftrightarrow\left(x-\dfrac{13}{8}\right)^2=\dfrac{-103}{64}\Rightarrow\) pt vô nghiệm
\(b,\left(5x-1\right)\left(x+1\right)-\left(2x-1\right)\left(2x+1\right)=x.\left(x+1\right)\)\(\Leftrightarrow5x^2+5x-x-1-\left(4x^2-1\right)=x^2+x\)
\(\Leftrightarrow5x^2+5x-x-1-4x^2+1-x^2-x=0\) \(\Leftrightarrow3x=0\Rightarrow x=0\)
\(c,7x^2-\left(2x-3\right)^2=1+3\left(x+2\right)^2\)
\(\Leftrightarrow7x^2-\left(4x^2-12x+9\right)=1+3\left(x^2+4x+4\right)\)
\(\Leftrightarrow7x^2-4x^2+12x-9=1+3x^2+12x+12\)\(\Leftrightarrow7x^2-4x^2+12x-9-1-3x^2-12x-12=0\)\(\Leftrightarrow-22=0\) ( vô lí)
Vậy phương trình vô nghiệm