K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 7 2016

VT=\(x^3+y^3+z^3-3xyz=\left(x+y\right)^3+z^3-3x^2y-3xy^2-3xyz\)

\(=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy.\left(x+y+z\right)\)

\(=\left(x+y\right)^2-\left(x+y\right).z+z^2-3xy\left(\text{vì }x+y+z=1\right)\)

\(=x^2+2xy+y^2-xz-yz+z^3-3xy\)

\(=x^2+y^2+z^2-xy-yz-xz\)

\(=\frac{1}{2}.\left(2x^2+2y^2+2z^2-2xy-2yz-2xz\right)\)

\(=\frac{1}{2}.\left[\left(x^2-2xy-y^2\right)+\left(y^2-2yz+z^2\right)+\left(x^2-2xz+z^2\right)\right]\)

\(=\frac{1}{2}.\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]\)=VP

=>dpcm

7 tháng 7 2016

Ta có : \(x^3+y^3+z^3-3xyz=\left(x+y\right)^3+z^3-3xy\left(x+y\right)-3xyz\)

\(=x+y+z\left(x^2+y^2+z^2+2xy+xz+yz\right)-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)

\(=x^2+y^2+z^2-xy-yz-xz=\frac{\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2xz+x^2\right)}{2}=\frac{1}{2}\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]\)

29 tháng 7 2016

\(x^3+y^3+z^3-3xyz=\left(x+y\right)^3+z^3-3x^2y-3xy^2-3xyz.\)

\(=\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2\right)-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(x^2+y^2+z^2+2xy-xz-yz-3xy\right)\)

\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)\)

\(=\frac{1}{2}\left(x+y+z\right)\left(2x^2+2y^2+2z^2-2xy-2xz-2yz\right)\)

\(=\frac{1}{2}\left(x+y+z\right)\text{[}\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2xz+x^2\right)\text{]}\)

\(=\frac{1}{2}\left(x+y+z\right)\text{[}\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\text{]}\left(\text{đ}pcm\right)\)

29 tháng 7 2016

Dùng biến đổi sau: \(a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)\)

\(VT=z^3+\left(x+y\right)^3-3xy\left(x+y\right)-3xyz\)

\(=\left(x+y+z\right)^3-3z\left(x+y\right)\left(z+x+y\right)-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left[\left(x+y+z\right)^2-3xy-3yz-3zx\right]\)

\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)

\(=\frac{1}{2}\left(x+y+z\right)\left[\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2zx+x^2\right)\right]\)

\(=\frac{1}{2}\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]\)

\(=VP\)

AH
Akai Haruma
Giáo viên
21 tháng 5 2021

Hầy mình không nghĩ lớp 7 đã phải làm những bài biến đổi như thế này. Cái này phù hợp với lớp 8-9 hơn.

1.

Đặt $x^2-y^2=a; y^2-z^2=b; z^2-x^2=c$. 

Khi đó: $a+b+c=0\Rightarrow a+b=-c$

$\text{VT}=a^3+b^3+c^3=(a+b)^3-3ab(a+b)+c^3$

$=(-c)^3-3ab(-c)+c^3=3abc$

$=3(x^2-y^2)(y^2-z^2)(z^2-x^2)$

$=3(x-y)(x+y)(y-z)(y+z)(z-x)(z+x)$

$=3(x-y)(y-z)(z-x)(x+y)(y+z)(x+z)$

$=3.4(x-y)(y-z)(z-x)=12(x-y)(y-z)(z-x)$

Ta có đpcm.

AH
Akai Haruma
Giáo viên
21 tháng 5 2021

Bài 2:

Áp dụng kết quả của bài 1:

Mẫu:

$(x^2-y^2)^3+(y^2-z^2)^3+(z^2-x^2)^3=3(x-y)(y-z)(z-x)(x+y)(y+z)(z+x)=3(x-y)(y-z)(z-x)(1)$

Tử: 

Đặt $x-y=a; y-z=b; z-x=c$ thì $a+b+c=0$

$(x-y)^3+(y-z)^3+(z-x)^3=a^3+b^3+c^3$

$=(a+b)^3-3ab(a+b)+c^3=(-c)^3-3ab(-c)+c^3=3abc$

$=3(x-y)(y-z)(z-x)(2)$

Từ $(1);(2)$ suy ra \(\frac{(x-y)^3+(y-z)^3+(z-x)^3}{(x^2-y^2)^3+(y^2-z^2)^3+(z^2-x^2)^3}=1\)

 

17 tháng 10 2016

x³ + y³ + z³ - 3xyz = (x+y)³ - 3xy(x-y) + z³ - 3xyz 
= [(x+y)³ + z³] - 3xy(x+y+z) 
= (x+y+z)³ - 3z(x+y)(x+y+z) - 3xy(x-y-z) 
= (x+y+z)[(x+y+z)² - 3z(x+y) - 3xy] 
= (x+y+z)(x² + y² + z² + 2xy + 2xz + 2yz - 3xz - 3yz - 3xy) 
= (x+y+z)(x² + y² + z² - xy - xz - yz). 
~~~~~~~~ 
Bài làm trên mình đã sử dụng hằng đẳng thức đáng nhớ sau: 
(a+b)³ = a³ + 3a²b + 3ab² + b³ = a³ + b³ + 3ab(a-b) 
=> a³ + b³ = (a+b)³ - 3ab(a-b). 
Chúc bạn học giỏi!

17 tháng 10 2016

cảm ơn bạn nhiều

6 tháng 8 2015

Biến đổi VT 

x^3 + y^3 + z^3 - 3xyz = ( x+  y)^3 - 3xy ( x+ y) + z^3 - 3xyz

                                  = ( x+  y + z)^3 - 3(x+y)z(x+y+z) - 3xy ( x + y +z )

                                   = ( x+ y+ z) [ ( x + y+ z)^2 - 3(x+y)z - 3xy)

                                     = ( x+ y +z ) . ( x^2 + y^2 + z^2 + 2xy + 2yz + 2xz - 3xy - 3yz - 3 xz )

                                  = ( x+ y +z )(x^2 + y^2 + z^2 - xy -yz - xz )

                                 = 1/2 ( x+ y +z) ( 2x^2 + 2y^2 + 2z^2 - 2xy - 2yz - 2 xz)

Đưa cái ngoạc cuối về dạng bình phương là xong