Bài 3: Cho đa thức H(x) = ( 2x – 1)20.
a) Tính tổng hệ số của đa thức H(x) khi khai triển .
b) Tính tổng hệ số bậc chẵn trừ tổng hệ số bậc lẽ của đa thức H(x) khi khai triển .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Tổng các hệ số bậc chẵn khi khai triển đa thức 2 x − 1 2018 được tính bằng
S = C 2018 0 .2 2018 + C 2018 2 .2 2016 + C 2018 4 .2 2014 + ... + C 2018 2018 .2 0
Ta có x + 1 2018 = ∑ k = 0 2018 C 2018 k x 2018 − k ; − x + 1 2018 = ∑ k = 0 2018 C 2018 k − x 2018 − k
Cộng hai vế đẳng thức trên ta được
x + 1 2018 + − x + 1 2018 = 2 ( C 2018 0 x 2018 + C 2018 2 x 2016 + C 2018 4 x 2014 + ... + C 2018 2018 x 0 )
Với x = 2 ta có 3 2018 + 1 = 2. S ⇒ S = 3 2018 + 1 2
Ta có:
\(A\left(x\right)=a_nx^n+a_{n-1}x^{n-1}+...+a_2x^2+a_1x+a_0\)
\(A\left(1\right)=a_n+a_{n-1}+...+a_1+a_0\)
=>A(1) là tổng các hệ số
Áp dụng:
\(f\left(1\right)=\left(1^2+2.1+1\right)^{30}\)
\(f\left(1\right)=4^{30}\)
Vậy tổng các hệ số của f(x) là 4
Tổng các hệ số phi khai triển đa thức \(P\left(x\right)\)là \(P\left(1\right)\).
\(P\left(1\right)=\left(1^3-2.1^2+2\right)^{2018}=1^{2018}=1\)
f(x) = (2x - 5)2 = 4x2 - 20x + 25.Tổng các hệ số của đa thức f(x) được triển khai là : 4 - 20 + 25 = 9