K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 3 2022

Bài làm

Ta có: \(\left|\frac{x^2-3x-1}{x^2+x+1}\right|< 3\)

\(\Leftrightarrow\hept{\begin{cases}\frac{x^2-3x-1}{x^2+x+1}< 3\\\frac{x^2-3x-1}{x^2+x+1}>-3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\frac{x^2-3x-1}{x^2+x+1}-3< 0\\\frac{x^2-3x-1}{x^2+x+1}+3>0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\frac{x^2-3x-1}{x^2+x+1}-\frac{3x^2+3x+3}{x^2+x+1}< 0\\\frac{x^2-3x-1}{x^2+x+1}+\frac{3x^2+3x+3}{x^2+x+1}>0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\frac{-2x^2-6x-4}{x^2+x+1}< 0\\\frac{4x^2+2}{x^2+x+1}>0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\frac{-2\left(x+1\right)\left(x+2\right)}{\left(x+\frac{1}{2}\right)^2+\frac{3}{4}}< 0\\\frac{2\left(2x^2+1\right)}{\left(x+\frac{1}{2}\right)^2+\frac{3}{4}}>0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\in\left(-\infty;1\right)U\left(2;+\infty\right)\\x\in\left(-\infty;+\infty\right)\end{cases}}\)

\(\Leftrightarrow x\in\left(-\infty;1\right)U\left(2;+\infty\right)\)

24 tháng 4 2017

A . 3x + 2(x + 1) = 6x - 7

<=> 3x + 2x + 2 = 6x -7

<=> 5x - 6x = -7 - 2

<=> -x = -9

<=> x =9

B . \(\frac{x+3}{5}\).< \(\frac{5-x}{3}\)

=> 3(x +3) < 5(5 -x)

<=> 3x+9 < 25 - 5x

<=> 3x + 5x < 25 - 9

<=> 8x < 16

<=> x < 2

C . \(\frac{5}{x+1}\)\(\frac{2x}{x^2-3x-4}\)=\(\frac{2}{x-4}\)

<=> \(\frac{5}{x+1}\)\(\frac{2x}{x^2+x-4x-4_{ }}\)\(\frac{2}{x-4}\)

<=> \(\frac{5}{x+1}\)\(\frac{2x}{\left(x+1\right)\left(x-4\right)}\)\(\frac{2}{x-4}\)

<=> 5(x - 4) + 2x = 2(x +1)

<=> 5x - 20 + 2x = 2x + 2

<=>7x - 2x = 2 + 20

<=> 5x = 22

<=> x =\(\frac{22}{5}\)

28 tháng 4 2019

\(\frac{x+4}{5}+\frac{3x+2}{10}< \frac{x-1}{3}\)

\(\Leftrightarrow\frac{6\left(x+4\right)}{30}+\frac{3\left(3x+2\right)}{30}< \frac{10\left(x-1\right)}{30}\)

\(\Leftrightarrow6x+24+9x+6< 10x-10\)

\(\Leftrightarrow5x+40< 0\)

\(\Leftrightarrow x< -8\)

Tự biểu diễn nha bạn

28 tháng 4 2019

\(\frac{x+4}{5}+\frac{3x+2}{10}< \frac{x-1}{3}\)

\(\Rightarrow\frac{6\left(x+4\right)}{30}+\frac{3\left(3x+2\right)}{30}< \frac{10\left(x-1\right)}{30}\)

\(\Rightarrow6x+24+9x+6< 10x-10\)

\(5x< -40\)

\(\Rightarrow x< -8\)

6 tháng 4 2020

hoc gioi the hihiihihihhhihihihihiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

7 tháng 4 2020

,mnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

18 tháng 4 2020

\(\frac{3x^2-7x+5}{x^2-x-x}-x+\frac{1}{x+1}< 0\Leftrightarrow\frac{x^2-6x+11}{\left(x-2\right)\left(x+1\right)}< 0\Leftrightarrow\frac{\left(x-3\right)^2+2}{\left(x-2\right)\left(x+1\right)}< 0\)

=> (x-2)(x+1)<0 ( vì (x-3)^2+2>0 lđ)

lại có x+1>x-2 => x-2<0 và x+1>0

=> -1<x<2

học tốt

19 tháng 4 2020

Cho mình làm lại nha:

\(\frac{3x^2-7x+5}{\left(x+1\right)\left(x-2\right)}< \frac{2x+2-1}{x+1}.\)

\(\Leftrightarrow\frac{3x^2-7x+5}{\left(x+1\right)\left(x-2\right)}-\frac{2x+1}{x+1}< 0.\)

\(\Leftrightarrow\frac{3x^2-7x+5-\left(2x+1\right)\left(x-2\right)}{\left(x+1\right)\left(x-2\right)}< 0.\)

\(\Leftrightarrow\frac{3x^2-7x+5-2x^2+4x-x+2}{\left(x+1\right)\left(x-2\right)}< 0.\)

\(\Leftrightarrow\frac{x^2-4x+4+3}{\left(x+1\right)\left(x-2\right)}< 0.\)

\(\Leftrightarrow\frac{\left(x-2\right)^2+3}{\left(x+1\right)\left(x-2\right)}< 0\Leftrightarrow\left(x+1\right)\left(x-2\right)< 0.\)

ta có x+1>x-2 => x+1>0;x-2<0 => -1<x<2

đọc lộn xíu xin lỗi nha

học tốt

1 tháng 5 2019

nhiều thế

a) \(\frac{5x-2}{2}\ge\frac{3-x}{3}\Leftrightarrow\frac{3\left(5x-2\right)}{6}\ge\frac{2\left(3-x\right)}{6}\Leftrightarrow15x-6\ge6-2x\Leftrightarrow x\ge\frac{12}{17}\)

0 [ 12/17

9 tháng 3 2019

Mình mới học lớp 5 (^_^)

    Sorry

12 tháng 4 2022

\(a,\dfrac{x-3}{x}=\dfrac{x-3}{x+3}\)\(\left(đk:x\ne0,-3\right)\)

\(\Leftrightarrow\dfrac{x-3}{x}-\dfrac{x-3}{x+3}=0\)

\(\Leftrightarrow\dfrac{\left(x-3\right)\left(x+3\right)-x\left(x-3\right)}{x\left(x+3\right)}=0\)

\(\Leftrightarrow x^2-9-x^2+3x=0\)

\(\Leftrightarrow3x-9=0\)

\(\Leftrightarrow3x=9\)

\(\Leftrightarrow x=3\left(n\right)\)

Vậy \(S=\left\{3\right\}\)

12 tháng 4 2022

\(b,\dfrac{4x-3}{4}>\dfrac{3x-5}{3}-\dfrac{2x-7}{12}\)

\(\Leftrightarrow\dfrac{4x-3}{4}-\dfrac{3x-5}{3}+\dfrac{2x-7}{12}>0\)

\(\Leftrightarrow\dfrac{3\left(4x-3\right)-4\left(3x-5\right)+2x-7}{12}>0\)

\(\Leftrightarrow12x-9-12x+20+2x-7>0\)

\(\Leftrightarrow2x+4>0\)

\(\Leftrightarrow2x>-4\)

\(\Leftrightarrow x>-2\)

7 tháng 4 2019

a) \(x^2-5x+6< 0\)

\(\Leftrightarrow x^2-2x-3x+6< 0\)

\(\Leftrightarrow x\left(x-2\right)-3\left(x-2\right)< 0\)

\(\Leftrightarrow\left(x-2\right)\left(x-3\right)< 0\)

\(\Leftrightarrow\hept{\begin{cases}x-2>0\\x-3< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>2\\x< 3\end{cases}}}\)

\(\Leftrightarrow2< x< 3\)

Vậy \(2< x< 3\)là các giá trị cần tìm của bất phương trình

b) \(\frac{2x\left(3x-5\right)}{x^2+1}< 0\)

\(\Leftrightarrow2x\left(3x-5\right)< 0\)(vì \(x^2+1>0\forall x\) )

\(\Leftrightarrow\hept{\begin{cases}2x>0\\3x-5< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>0\\3x< 5\end{cases}\Leftrightarrow}\hept{\begin{cases}x>0\\x< \frac{5}{3}\end{cases}}}\)

\(\Leftrightarrow0< x< \frac{5}{3}\)

Vậy \(0< x< \frac{5}{3}\)là các giá trị cần tìm của bất phương trình