Tìm giá trị nhỏ nhất
D=x2-3.x+5
E=x2 +14x+y2-2y+7
G=x2+4xy+2y2-22y+173
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x^2 + 14x + y^2 - 2y + 7
( x^2 + 14 x+ 49 ) + ( y - 2y + 1) -43
( x-7)^2 + ( y-1)^2 - 43
Vậy Min của biểu thức là : -43 khi \(\hept{\begin{cases}\left(x-7\right)^2\\\left(y-1\right)^2=0\end{cases}}=0\) \(\Leftrightarrow\hept{\begin{cases}x-7=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=7\\y=1\end{cases}}\)
A= 2x^2 + y^2 - 2xy -2x+3
A= x^2-2xy + y^2 + x^2 - 2x+ 1 +2
A= (x-y)^2 + (x-1)^2 + 2
(x-y)^2> hoặc = 0 với mọi giá trị của x
(x-1)^2 > hoặc =0 với mọi giá trị của x
=> (x-y)^2 + (x-1)^2 > hoặc =0 với mọi giá trị của x
=> (x-y)^2 + (x-1)^2 + 2 > hoặc =2
=> A lớn hơn hoặc bằng 2
=> GTNN của A=2 tại x=y=1
\(C=\left(x^2+4y^2+25-4xy+10x-20y\right)+\left(y^2-2y+1\right)+2\)
\(C=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\)
\(C_{min}=2\) khi \(\left\{{}\begin{matrix}x=-3\\y=1\end{matrix}\right.\)
a: Ta có: \(A=x^2-20x+101\)
\(=x^2-20x+100+1\)
\(=\left(x-10\right)^2+1\ge1\forall x\)
Dấu '=' xảy ra khi x=10
<=> xaa ) C= x2-6x + 11= (x-3)2 +2
ta co : (x-3)2 + > hoặc = 2
=> C đạt giá trị nhỏ nhất khi C=2
<=> x=3
b) D =(x-1) (x+2)(x+3)(x+6)
= [ (x-1)(x+6)][(x+2)(x+3)]
=(x2 +5x -6)(x2+5x +6)
=(x2+5x )2 - 36
ta có (x2 +5x)2 -36 luôn > hoặc = -36
=> D đạt GTNN khi D = -36
<=>(x2 + 5x)2 =0
=> x = 0 hoac x =-5
c) E = x2 - 4x + y2 - 8y + 6
=(x2 -4x +4 ) + (y2 - 8y +16 ) -14
= (x -2)2 +( y-4)2 -14
ta co (x-2)2 + (y-4)2 -14 luôn > hoặc = -14
=> E dat GTNN khi E = -14
<=> (x-2)2 =0 va (y-4)2 =0
<=> x =2 va y=4
d) G =x2 -4xy +5y2 + 10x -22y + 28 ( de sai nha ban )
= [(x2 - 4xy + 4y2 ) + 10x -20y +25 ]+ ( y2 -2y +1 ) +2
= [(x-2y)2 + 10x - 20y + 25 ] + (y-1)2 +2
= [( x-2y)2 + 2. 5 (x-2y) + 25 ] + (y-1)2 +2
= (x-2y +5)2 + ( y-1)2 +2
ta co (x-2y +5 )2 + (y-1)2 +2 luôn > hoặc = 0
=> G đạt GTNN khi (x-2y+5 )2=0 hoac (y-1)2 =0
<=> y-1 = 0 => y = 1
,=> x =-3
\(A=\left(x^2-6x+9\right)+2=\left(x-3\right)^2+2\ge2\\ A_{min}=2\Leftrightarrow x=3\\ B=2\left(x^2-10x+25\right)+51=2\left(x-5\right)^2+51\ge51\\ B_{min}=51\Leftrightarrow x=5\\ C=\left[\left(x^2-4xy+4y^2\right)+10\left(x-2y\right)+25\right]+\left(y^2-2y+1\right)+2\\ C=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\\ C_{min}=2\Leftrightarrow\left\{{}\begin{matrix}x-2y+5=0\\y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2y-5=2-5=-3\\y=1\end{matrix}\right.\)
a) \(A=\left(x^2-6x+9\right)+2=\left(x-3\right)^2+2\ge2\)
\(minA=2\Leftrightarrow x=3\)
b) \(B=2\left(x^2-10x+25\right)+51=2\left(x-5\right)^2+51\ge51\)
\(minB=51\Leftrightarrow x=5\)
c) \(C=\left[x^2-2x\left(2y-5\right)+\left(2y-5\right)^2\right]+\left(y^2-2y+1\right)+2=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\)
\(minC=2\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=1\end{matrix}\right.\)
a) D=x2-3x+5=x2-3x+2,25+2,75=(x-1,5)2+2,75
Vì (x-1,5)2luôn lớn hơn hoặc bằng 0 nên để D nhỏ nhất thì (x-1,5)2cũng phải nhỏ nhất hay (x-1,5)2=0 =>x=1,5
b)-43
bài dạng này chỉ có các bn thi violympic làm dc thui
tui làm phần E nếu h sẽ lam hêt k thi bye
E = (x+7)2 + ( y-1)2 -49 -1 +7
GTNN: E = -43