Tìm x,y,z biết:
2x = 3y-2x = 4z-3x và x-y+z = 44
(Nhớ giải chi tiết nhé!)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Ta có: \(\text{10x=6y=5z}\Rightarrow\frac{10x}{30}=\frac{6y}{30}=\frac{5z}{30}\Leftrightarrow\frac{x}{3}=\frac{y}{5}=\frac{z}{6}\) và \(x+y-z=24\)
Áp dụng t/c dãy tỉ số = nhau, ta có:
\(\frac{x}{3}=\frac{y}{5}=\frac{z}{6}=\frac{x+y-z}{3+5-6}=\frac{24}{2}=12\)
Khi đó: \(\frac{x}{3}=12\Rightarrow x=36\)
\(\frac{y}{5}=12\Rightarrow y=60\)
\(\frac{z}{6}=12\Rightarrow z=72\)
Vậy\(x=36\) :\(y=60\) \(z=72\)
a.
$7x-2y=5x-3y$
$\Leftrightarrow 2x=-y$. Thay vào điều kiện số 2 ta có:
$-y+3y=20$
$2y=20$
$\Rightarrow y=10$.
$x=\frac{-y}{2}=\frac{-10}{2}=-5$
b.
$2x=3y\Rightarrow \frac{x}{3}=\frac{y}{2}$
$3y=4z-2y\Rightarrow 5y=4z\Rightarrow \frac{y}{4}=\frac{z}{5}$
$\Rightarrow \frac{x}{6}=\frac{y}{4}=\frac{z}{5}$
Áp dụng tính chất dãy tỉ số bằng nhau:
$\frac{x}{6}=\frac{y}{4}=\frac{z}{5}=\frac{x+y+z}{6+4+5}=\frac{45}{15}=3$
$\Rightarrow x=6.3=18; y=4.3=12; z=5.3=15$
a/
\(3x=4z\Rightarrow x=\frac{4z}{3};2y-3z=4z\Rightarrow y=\frac{7z}{2}\)
\(\Rightarrow x+y-z=\frac{4z}{3}+\frac{7z}{2}-z=46\)
Giải r tìm z từ đó tìm được x và y
b/ Tương tự câu a
+) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{100}{25}=4\)
=> \(\hept{\begin{cases}\frac{x^2}{9}=4\\\frac{y^2}{16}=4\end{cases}}\) => \(\hept{\begin{cases}x^2=4.9=36\\y^2=4.16=64\end{cases}}\) => \(\hept{\begin{cases}x=\pm6\\y=\pm8\end{cases}}\)
Vậy ...
Mình làm một câu để bạn tham khảo, sau đó bạn áp dụng làm các bài còn lại nha ^^
Có gì không hiểu bạn ib nha ^^
1. \(2x=3y-2x\left(1\right)\) và \(x+y=14\)
\(\left(1\right)\Leftrightarrow4x=3y\)
\(\Leftrightarrow\dfrac{x}{3}=\dfrac{y}{4}\)
Theo tính chất dãy tỉ số bằng nhau, có:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{x+y}{3+4}=\dfrac{14}{7}=2\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2.3=6\\y=2.4=8\end{matrix}\right.\)
Bạn tự kết luận ^^
Ta có: 2x=3y-2x
=> 3y=4x
Lại có: 2x=4z-3x
=>4z=5x
=>\(\frac{y}{4}\)= \(\frac{x}{3}\) và \(\frac{x}{4}\) = \(\frac{z}{5}\)
=> \(\frac{x}{12}\)= \(\frac{y}{16}\)= \(\frac{z}{15}\)= \(\frac{x-y+z}{12-16-15}\)= \(\frac{44}{11}\)= 4
=> x=48
y=64
z=60
hỏi chấm tự hỏi tự chả lời luôn