tính:
\(1.2.3+2.3.4+3.4.5+....+99.100.101\)
lâu rồi ko đăng câu hỏi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.2.3 = 1/4 . (1.2.3.4 - 0.1.2.3)
2.3.4 = 1/4 . (2.3.4.5 - 1.2.3.4)
3.4.5 = 1/4 . (3.4.5.6 - 2.3.4.5)
.................
99.100.101 = 1/4 . (99.100.101.102 - 98.99.100.101)
C = 1.2.3+2.3.4+3.4.5+.........+99.100.101
C= 1/4 . (99.100.101.102 - 98.99.100.101)
CHUC BN HOK GIỎI!
Đặt A=1/1.2.3+1/2.3.4+...+1/99.100.101
2A=2/1.2.3+2/2.3.4+...2/99.100.101
2A=3-1/1.2.3+4-2/2.3.4+...+101-99/99.100.101
2A=3/1.2.3-1/1.2.3+4/2.3.4-2/2.3.4+...+101/99.100.101-99/99.100.101
2A=1/1.2-1/2.3+1/2.3-1/3.4+...+1/99.100-1/100.101
2A=1/2-1/10100
A = 1.2.3 + 2.3.4 + 3.4.5 + ... + 99.100.101
4A = 4.(1.2.3 + 2.3.4 + 3.4.5 + ... + 99.100.101)
= 1.2.3.(4-0) + 2.3.4.(5-1) + 3.4.5.(6-2) + ... + 99.100.101.(102-98)
= 1.2.3.4 - 1.2.3.4 + 2.3.4.5 - 2.3.4.5 + 3.4.5.6 - 3.4.5.6 + ... + 98.99.100.101 - 98.99.100.101 + 99.100.101.102
4A = 99.100.101.102
A = 99.100.101.102 : 4
A = 25497450
Đặt \(A=1.2.3+2.3.4+3.4.5+...+99.100.101\)
\(\Rightarrow4A=1.2.3.4+2.3.4.4+...+99.100.101.4\)
\(=1.2.3\left(4-0\right)+2.3.4\left(5-1\right)+...+99.100.101\left(102-98\right)\)
\(=\left(1.2.3.4+2.3.4.5+...+99.100+101.102\right)-\left(0.1.2.3+1.2.3.4+...+98.99.100.101\right)\)
\(=99.100.101.102-0.1.2.3\)
\(=101989800\)
\(\Rightarrow A=101989800:4=25497450\)
Vậy \(A=25497450.\)
Đặt A = 1.2.3 + 2.3.4 + ... + 99.100.101
=> 4A = 1.2.3.4 + 2.3.4.(5-1) + ... + 99.100.101.(102-98)
=> 4A = 1.2.3.4 + 2.3.4.5 - 1.2.3.4 + ... + 99.100.101.102 - 98.99.100.101
=> 4A = 99.100.101.102
=> 4A = 101989800
=> A = 25497450
A = 1.2.3+2.3.4+...+99.100.101
⇒ 4A = 1.2.3.4+2.3.4.(5−1)+...+99.100.101.(102−98)
=1.2.3.4+2.3.4.5−1.2.3.4+...+99.100.101.102−98.99.100.101
=99.100.101.102=99.100.101.102
⇒A = 99.100.101.102 : 4 = 90.25.101.102
Vậy...
Mà đây là câu hỏi lớp lớn sao bạn đăng lên toán lớp 4 vậy ??
Đặt \(S=1.2.3+2.3.4+3.4.5+...+99.100.101\)
\(\Rightarrow4S=1.2.3.4+2.3.4.4+3.4.5.4+...+99.100.101.4\)
\(4S=1.2.3.4+2.3.4.\left(5-1\right)+3.4.5\left(6-2\right)+...+99.100.101\left(102-98\right)\)
\(4S=1.2.3.4+2.3.4.5-1.2.3.4+3.4.5.6-2.3.4.5+...+99.100.101.102-98.99.100.101\)
\(4S=99.100.101.102\)\(\Rightarrow S=\frac{99.100.101.102}{4}=25497450\)