rút gọn A=√(x√2x-1) - √((x-√(2x-1))
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{2x+1}{x\left(2x+1\right)}-\dfrac{x^2}{x\left(2x+1\right)}+\dfrac{2x^2-3x-1}{x\left(2x+1\right)}\)
\(=\dfrac{2x+1-x^2+2x^2-3x-1}{x\left(2x+1\right)}\)
\(=\dfrac{x^2-x}{x\left(2x+1\right)}=\dfrac{x\left(x-1\right)}{x\left(2x+1\right)}\)
\(=\dfrac{x-1}{2x+1}\)
\(=\dfrac{2x+1}{x\left(2x+1\right)}-\dfrac{x^2}{x\left(2x+1\right)}+\dfrac{2x^2-3x-1}{x\left(2x+1\right)}\)
\(=\dfrac{2x+1-x^2+2x^2-3x-1}{x\left(2x+1\right)}\)
\(=\dfrac{x^2+x}{x\left(2x+1\right)}\)
\(=\dfrac{x-1}{2x+1}\).
A = \(\left(3x-1\right)^2+2\left(3x-1\right)\left(2x+1\right)+\left(2x+1\right)^2\)
A = \(\left(3x-1+2x+1\right)^2\)
A)
<=>(3x)^2−2×3x+1+2(3x−1)(2x+1)+(2x+1)^2
<=>(3x)^2−2×3x+1+(6x−2)(2x+1)+(2x+1)^2
<=>(3x)^2−2×3x+1+12x^2+6x−4x−2+(2x+1)^2
<=>(3x)^2−2×3x+1+12x^2+6x−4x−2+(2x)^2+2×2x+1
<=>32x^2−2×3x+1+12x^2+6x−4x−2+(2x)^2+2×2x+1
<=>9x^2−2×3x+1+12x^2+6x−4x−2+(2x)^2+2×2x+1
<=>9x^2−2×3x+1+12x^2+6x−4x−2+2^2x^2+2×2x+1
<=>9x^2−2×3x+1+12x^2+6x−4x−2+4x^2+2×2x+1
<=>9x^2−6x+1+12x^2+6x−4x−2+4x^2+2×2x+1
<=>9x^2−6x+1+12x^2+6x−4x−2+4x^2+4x+1
<=>(9x^2+12x^2+4x^2)+(−6x+6x−4x+4x)+(1−2+1)
<=> 25x^2
B)
<=>2x(4x^2−6x+9)+3(4x^2−6x+9)+8(1−x)(1+x+x^2)
<=>8x^3−12x^2+18x+3(4x^2−6x+9)+8(1−x)(1+x+x^2)
<=>8x^3−12x^2+18x+12x^2−18x+27+8(1−x)(1+x+x^2)
<=>8x^3−12x^2+18x+12x^2−18x+27+(8−8x)(1+x+x^2)
<=>8x^3−12x^2+18x+12x^2−18x+27+8(1+x+x^2)−8x(1+x+x^2)
<=>8x^3−12x^2+18x+12x^2−18x+27+8+8x+8x^2−8x(1+x+x^2)
<=>8x^3−12x^2+18x+12x^2−18x+27+8+8x+8x^2−(8x+8x2+8x^3)
<=>8x^3−12x^2+18x+12x^2−18x+27+8+8x+8x^2−8x−8x^2−8x^3
<=>(8x^3−8x^3)+(−12x^2+12x^2+8x^2−8x^2)+(18x−18x+8x−8x)+(27+8)
<=> 35
\(a,=x^2-6x+9-x^2+6x=9\\ b,=4x^2+4x+1-4x^2+9-4x-8=2\\ c,=\left(2x^2-2x-x+1\right):\left(x-1\right)\\ =\left(x-1\right)\left(2x-1\right):\left(x-1\right)=2x-1\)
`a)(x-3)^2-x(x-6)`
`=x^2-6x+9-x^2+6x=9`
`b)(2x+1)^2-(3+2x)(2x-3)-4(x+2)`
`=4x^2+4x+1-(4x^2-9)-4x-8`
`=2`
`c)(2x^2-3x+1):(x-1)`
`=(2x^2-2x-x+1):(x-1)`
`=[2x(x-1)-(x-1)]:(x-1)`
`=2x-1`
\(\Rightarrow\)\(A=\left(2x\right)^3-1-x^2\left(8x-1\right)\)
Thay \(x=10\) vào A ta đc:
\(A=\left(2\cdot10\right)^3-1-10^2\left(8\cdot10-1\right)=99\)
Answer:
\(\left(2x+1\right)^2+\left(2x-1\right)^2-2\left(1+2x\right)\left(2x-1\right)\)
\(=(4x^2+4x+1)+(4x^2-4x+1)-2(4x^2-1)\)
\(=4x^2+4x+1+4x^2-4x+1-8x^2+2\)
\(=(4x^2+4x^2-8x^2)+(4x-4x)+(1+1+2)\)
\(=4\)
\((x-1)^3-(x+2)(x^2-2x+4)+3(x-1)(x+1)\)
\(=(x^3-3x^2+3x-1)-(x^3+8)+3(x^2-1)\)
\(=x^3-3x^2+3x-1-x^3-8+3x^2-3\)
\(=(x^3-x^3)+(-3x^2+3x^2)+3x+(-1-8-3)\)
\(=3x-12\)
Ủa đáp số là\(\sqrt{2x-2}\) với \(\sqrt{2}\) mà bạn thử A2 đi