Cm: A= 1/2! + 1/3! + 1/4! +......+ 1/100! <1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=1+12+13+14+⋯+12100−1=1+12+(13+14)+(15+⋯+18)+(19+⋯+116)+⋯+(1299+1+⋯+12100)−12100=1+12+(12+1+122)+(122+1+⋯+123)+(123+1+⋯+124)+⋯+(1299+1+⋯+12100)−12100>1+12+2.122+22.123+23.124+⋯+299.12100−12100=1+12+12+⋯+12−12100=1+100.12−12100=1+50−12100=50+1−12100>50𝐴=1+12+13+14+⋯+12100−1=1+12+(13+14)+(15+⋯+18)+(19+⋯+116)+⋯+(1299+1+⋯+12100)−12100=1+12+(12+1+122)+(122+1+⋯+123)+(123+1+⋯+124)+⋯+(1299+1+⋯+12100)−12100>1+12+2.122+22.123+23.124+⋯+299.12100−12100=1+12+12+⋯+12−12100=1+100.12−12100=1+50−12100=50+1−12100>50
Vậy A>50.
Bài a:
1.3.5......199 = 1.2.3.4......199.200/2.4.6.....200
= 1.2.3.4.........199.200/1.2.3.4....100.2100
=101.102.....200/2.2......2.2
=101/2 . 102/2 . 103/2 . ..... . 200/2
A=1/1^2+ 1/2^2+ 1/3^2+...+ 1/99^2+ 1/100^2
A=1+ 1/2^2+ 1/3^2+...+ 1/99^2+ 1/100^2
A<1+(1/2^2+1/2.3+1/3/4+...+1/98.99+1/99.100) (giữ nguyên phân số 1/2^2)
A<1+ (1/4+1/2-1/3+1/3-1/4+...+1/99-1/99+1/99-1/100)
A<1+ (1/4+1/2-1/100)
Mà 1/4+1/2-1/100 <1/4+1/2=3/4
=>A<1+3/4=7/4
\(A=\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{100!}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(< 1-\frac{1}{100}< 1\)
\(=>đpcm\)
Ủng hộ mk nha ^_-