Tính giá trị của biểu thức: M = 1/2 + 1/6 + 1/12 + ... + 1/380
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=>M=\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+...+\dfrac{1}{2009\cdot2010}\)
`M=1/2-1/3+1/3-1/4+1/4-1/5+...+1/2009-1/2010`
`M=1/2-1/2010`
`M=502/1005`
a) Với m = 0, giá trị biểu thức 12 : (3 – m) là:
12 : (3 – 0) = 12 : 3 = 4
Với m = 1, giá trị biểu thức 12 : (3 – m) là:
12 : (3 – 1 ) = 12 : 2 = 6
Với m = 2, giá trị biểu thức 12 : (3 – m) là:
12 : (3 – 2) = 12 : 1 = 12
b) Vì 4 < 6 < 12 nên trong ba giá trị tìm được ở câu a, với m = 2 thì biểu thức 12 : (3 – m) có giá trị lớn nhất.
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}=1-\dfrac{1}{6}=\dfrac{5}{6}\)
a×1/2+a×1/6+a×1/12
vơi a =8
\(\Rightarrow\)8×1/2+8×1/6+8×1/12=8×(1/2×1/6+1/12)=8×3/4=6
`A=1/2+1/6+1/12+1/20+1/30+...+1/9900`
`=1/(1xx2)+1/(2xx3)+1/(3xx4)+1/(4xx5)+1/(5xx6)+...+1/(99xx100)`
`=1/1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+...+1/99-1/100`
`=1/1-1/100`
`=100/100-1/100`
`=99/100`
A=1/2+1/6+1/12+1/20+1/30+...+1/9900
=1/(1��2)+1/(2��3)+1/(3��4)+1/(4��5)+1/(5��6)+...+1/(99��100)=1/(1xx2)+1/(2xx3)+1/(3xx4)+1/(4xx5)+1/(5xx6)+...+1/(99xx100)
=1/1−1/2+1/2−1/3+1/3−1/4+1/4−1/5+1/5−1/6+...+1/99−1/100=1/1−1/2+1/2−1/3+1/3−1/4+1/4−1/5+1/5−1/6+...+1/99−1/100
=1/1−1/100=1/1−1/100
=100/100−1/100=100/100−1/100
=99/100=99/100
Chẳng ai quan tâm tới câu hỏi của tui. Buồn quá. Buồn không còn gì để tả. À mà có văn đâu mà tả? :))))
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+....+\dfrac{1}{19}-\dfrac{1}{20}=\dfrac{19}{20}\)