K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2016

\(\left(1-\frac{1}{3}\right).\left(1-\frac{1}{6}\right).\left(1-\frac{1}{10}\right).\left(1-\frac{1}{15}\right)...\left(1-\frac{1}{780}\right).a=1\)

\(\left(\frac{2}{3}.\frac{5}{6}.\frac{9}{10}.\frac{14}{15}...\frac{779}{780}\right).a=1\)

\(\left(\frac{4}{6}.\frac{10}{12}.\frac{18}{20}.\frac{28}{30}...\frac{1558}{1560}\right).a=1\)

\(\left(\frac{1.4}{2.3}.\frac{2.5}{3.4}.\frac{3.6}{4.5}.\frac{4.7}{5.6}...\frac{38.41}{39.40}\right).a=1\)

\(\left(\frac{1.2.3.4...38}{3.4.5.6..40}.\frac{4.5.6.7...41}{2.3.4.5..39}\right).a=1\)

\(\left(\frac{2}{39.40}.\frac{40.41}{2.3}\right).a=1\)

\(\frac{41}{39.3}.a=1\)

\(\frac{41}{117}.a=1\)

\(a=1:\frac{41}{117}\)

\(a=1.\frac{117}{41}=\frac{117}{41}\)

Vậy a = 117/41

Ủng hộ mk nha ^_-

2 tháng 7 2016

các bn giups mk đi mai mk phải nộp bài rùi

27 tháng 6 2019

\(\left(1-\frac{1}{3}\right)\cdot\left(1-\frac{1}{6}\right)\cdot\cdot\cdot\left(1-\frac{1}{780}\right)\)

\(=\frac{2}{3}\cdot\frac{5}{6}\cdot\cdot\cdot\frac{779}{780}\)

\(=\frac{4}{6}\cdot\frac{10}{12}\cdot\cdot\cdot\frac{1578}{1560}\)

\(=\frac{1\cdot4}{2\cdot3}\cdot\frac{2\cdot5}{3\cdot4}\cdot\cdot\cdot\frac{38\cdot41}{39\cdot40}\)

\(=\frac{\left(1\cdot4\right)\cdot\left(2\cdot5\right)\cdot\cdot\cdot\left(38\cdot41\right)}{\left(2\cdot3\right)\cdot\left(3\cdot4\right)\cdot\cdot\cdot\left(39\cdot40\right)}\)

\(=\frac{\left(1\cdot2\cdot\cdot\cdot38\right)\cdot\left(4\cdot5\cdot\cdot\cdot41\right)}{\left(2\cdot3\cdot\cdot\cdot39\right)\cdot\left(3\cdot4\cdot\cdot\cdot40\right)}\)

\(=\frac{1\cdot41}{39\cdot3}\)

\(=\frac{41}{117}\)

27 tháng 6 2019

mk tk cho bạn trả lời sớm nhất đúng nhất

26 tháng 6 2016

\(C=\frac{5}{2}\cdot\frac{7}{5}\cdot\frac{9}{7}\cdot\frac{11}{9}\cdot...\cdot\frac{2017}{2015}\cdot\frac{2019}{2017}=\frac{2019}{2}\)

\(D=\left(1-\frac{1}{\frac{2\cdot3}{2}}\right)\cdot\left(1-\frac{1}{\frac{3\cdot4}{2}}\right)\cdot\left(1-\frac{1}{\frac{4\cdot5}{2}}\right)\cdot\left(1-\frac{1}{\frac{5\cdot6}{2}}\right)\cdot...\cdot\left(1-\frac{1}{\frac{39\cdot40}{2}}\right)\)

\(=\left(1-\frac{2}{2\cdot3}\right)\cdot\left(1-\frac{2}{3\cdot4}\right)\cdot\left(1-\frac{2}{4\cdot5}\right)\cdot\left(1-\frac{2}{5\cdot6}\right)\cdot...\cdot\left(1-\frac{2}{39\cdot40}\right)\cdot\)

Nhận xét: \(1-\frac{2}{n\left(n+1\right)}=\frac{n\left(n+1\right)-2}{n\left(n+1\right)}=\frac{n^2+n-2}{n\left(n+1\right)}=\frac{\left(n+2\right)\left(n-1\right)}{n\left(n+1\right)}\)nên:

\(D=\frac{4\cdot1}{2\cdot3}\cdot\frac{5\cdot2}{3\cdot4}\cdot\frac{6\cdot3}{4\cdot5}\cdot\frac{7\cdot4}{5\cdot6}\cdot\frac{8\cdot5}{6\cdot7}\cdot...\cdot\frac{41\cdot38}{39\cdot40}=\)

\(D=\frac{4\cdot5\cdot6\cdot7\cdot...\cdot41\times1\cdot2\cdot3\cdot4\cdot...\cdot38}{2\cdot3\cdot4\cdot5\cdot...\cdot39\times3\cdot4\cdot5\cdot6\cdot..\cdot40}=\frac{1}{39}\cdot\frac{41}{3}=\frac{41}{117}\)

13 tháng 7 2019

#)Giải :

a)\(2009^{\left(1000-1^3\right)\left(1000-2^3\right)...\left(1000-15^3\right)}=2009^{\left(1000-1^3\right)...\left(1000-10^3\right)...\left(1000-15^3\right)}=2009^0=1\)

b)\(\left(\frac{1}{125}-\frac{1}{1^3}\right)\left(\frac{1}{125}-\frac{1}{2^3}\right)...\left(\frac{1}{125}-\frac{1}{25^3}\right)=\left(\frac{1}{125}-\frac{1}{1^3}\right)...\left(\frac{1}{125}-\frac{1}{5^3}\right)...\left(\frac{1}{125}-\frac{1}{25^3}\right)=\left(\frac{1}{125}-\frac{1}{1^3}\right)...0...\left(\frac{1}{125}-\frac{1}{25^3}\right)=0\)

8 tháng 3 2019

Mk ko biết lm nhưng cứ k thoải mái nha

SORRY

24 tháng 7 2018

= (1/2).(2/3).(4/5).(5/6)......(2016/2017).(2017/2018)

=1.2.3.4.5......2016.2017/2.3.4.5.....2017.2018

=1/2018

24 tháng 7 2018

\(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)\cdot\cdot\cdot\cdot\cdot\left(1-\frac{1}{2017}\right)\left(1-\frac{1}{2018}\right)\)

\(=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot\cdot\cdot\cdot\cdot\frac{2016}{2017}\cdot\frac{2017}{2018}\)

\(=\frac{1\cdot2\cdot3\cdot\cdot\cdot\cdot\cdot2016\cdot2017}{2\cdot3\cdot4\cdot\cdot\cdot\cdot2017\cdot2018}\)

\(=\frac{1}{2018}\)

17 tháng 4 2019

G = \(\frac{2^2}{1.3}\).\(\frac{3^2}{2.4}\).\(\frac{4^2}{3.5}\).....\(\frac{50^2}{49.51}\)                         

=> G = \(\frac{2.2}{1.3}\).\(\frac{3.3}{2.4}\).\(\frac{4.4}{3.5}\).....\(\frac{50.50}{49.51}\)

=> G = \(\frac{2.2.3.3.4.4.....50.50}{1.2.3.3.4.4.....50.51}\)

=> G = \(\frac{2.50}{1.51}\)

=> G = \(\frac{100}{51}\)

17 tháng 4 2019

公关稿黄继线长旧款您