K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 7 2016

Gọi tổng trên là A , ta có:

A=2+22+23+.....+299+2100

2A=22+23+24+.....+2100+2101

2A-A=(22+23+24+....+2100+2101)-(2+22+23+.....+299+2100)

A=2101-2

2 tháng 7 2016

Đặt A = 2 + 22 + 23 + .... + 299 + 2100

=> 2A =  22 + 23 + .... + 2100 + 2101

=> 2A - A = 2101 - 2

=>A =  2101 - 2

24 tháng 7 2017

\(A=2^0+2^1+2^2\)\(+2^3+...+\)\(2^{50}\)

\(2A=2+2^2+2^3+...+2^{51}\)

\(2A-A=A=2^{51}-2^0\)

\(B=5+5^2+5^3+...+5^{99}+5^{100}\)

\(5B=5^2+5^3+5^4+...+5^{100}+5^{101}\)

\(5B-B=4B=5^{101}-5\)

\(B=\frac{5^{101}-5}{4}\)

\(C=3-3^2+3^3-3^4+...+\)\(3^{2007}-3^{2008}+3^{2009}-3^{2010}\)

\(3C=3^2-3^3+3^4-3^5+...-3^{2008}+3^{2009}-3^{2010}+3^{2011}\)

\(3C+C=4C=3^{2011}+3\)

\(C=\frac{3^{2011}+3}{4}\)

\(S_{100}=5+5\times9+5\times9^2+5\times9^3+...+5\times9^{99}\)

\(S_{100}=5\times\left(1+9+9^2+9^3+...+9^{99}\right)\)

\(9S_{100}=5\times\left(9+9^2+9^3+...+9^{99}+9^{100}\right)\)

\(9S_{100}-S_{100}=8S_{100}=5\times\left(9^{100}-1\right)\)

\(S_{100}=\frac{5\times\left(9^{100}-1\right)}{8}\)

24 tháng 10 2023

A=20+21+22+23+...++23+...+250250

2�=2+22+23+...+2512A=2+22+23+...+251

2�−�=�=251−202AA=A=25120

�=5+52+53+...+599+5100B=5+52+53+...+599+5100

5�=52+53+54+...+5100+51015B=52+53+54+...+5100+5101

5�−�=4�=5101−55BB=4B=51015

�=5101−54B=451015

�=3−32+33−34+...+C=332+3334+...+32007−32008+32009−320103200732008+3200932010

3�=32−33+34−35+...−32008+32009−32010+320113C=3233+3435+...32008+3200932010+32011

3�+�=4�=32011+33C+C=4C=32011+3

�=32011+34C=432011+3

�100=5+5×9+5×92+5×93+...+5×999S100=5+5×9+5×92+5×93+...+5×999

�100=5×(1+9+92+93+...+999)S100=5×(1+9+92+93+...+999)

9�100=5×(9+92+93+...+999+9100)9S100=5×(9+92+93+...+999+9100)

9�100−�100=8�100=5×(9100−1)9S100S100=8S100=5×(91001)

�100=5×(9100−1)8S100=85×(91001)

11 tháng 7 2019

\(A=1+2+2^2+...+2^{51}\)

\(2A=2+2^2+2^3+...+2^{52}\)

\(2A-A=\left(2+2^2+2^3+...+2^{52}\right)-\left(1+2+2^2+...+2^{51}\right)\)

\(A=2^{52}-1\)

\(B=5+5^2+5^3+...+5^{100}\)

\(5B=5^2+5^3+5^4+...+5^{101}\)

\(5B-B=\left(5^2+5^3+5^4+...+5^{101}\right)-\left(5+5^2+5^3+...+5^{100}\right)\)

\(4B=5^{101}-5\)

\(B=\frac{5^{101}-5}{4}\)

14 tháng 5 2022

-Quy luật: Nhân mỗi vế của đẳng thức cho số thích hợp để tạo ra đẳng thức mới, khi cộng (hoặc trừ) mỗi vế của mỗi đẳng thức thì sẽ rút gọn bớt.

a) \(A=2-2^2+2^3-2^4+...+2^{99}-2^{100}\)

\(\Rightarrow2A=2^2-2^3+2^4-2^5+...+2^{100}-2^{101}\)

\(\Rightarrow2A+A=2^2-2^3+2^4-2^5+...+2^{100}-2^{101}+\left(2-2^2+2^3-2^4+...+2^{99}-2^{100}\right)\)

\(\Rightarrow A=-2^{101}+2\)

b,c) làm tương tự. 

d) \(D=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{100}}\)

\(\Rightarrow3D=3+1+\dfrac{1}{3}+...+\dfrac{1}{3^{99}}\)

\(\Rightarrow3D-D=3+1+\dfrac{1}{3}+...+\dfrac{1}{3^{99}}-\left(1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{100}}\right)\)

\(\Rightarrow2D=3+\dfrac{1}{3^{100}}\)

\(\Rightarrow2D=\dfrac{3^{101}+1}{3^{100}}\Rightarrow D=\dfrac{3^{101}+1}{2.3^{100}}\)

e) làm tương tự nhưng đổi thành cộng.

22 tháng 9 2016

Đặt A = 2 + 22 + 23 + 2+ ... + 299

2A = 22 + 23 + 24 + 25 + ... + 2100

2A - A = (22 + 23 + 24 + 25 + ... + 2100) - (2 + 22 + 23 + 24 + ... + 299)

A = 2100 - 2

Bài 1: 

a: \(2A=2^{101}+2^{100}+...+2^2+2\)

\(\Leftrightarrow A=2^{100}-1\)

b: \(3B=3^{101}+3^{100}+...+3^2+3\)

\(\Leftrightarrow2B=3^{100}-1\)

hay \(B=\dfrac{3^{100}-1}{2}\)

c: \(4C=4^{101}+4^{100}+...+4^2+4\)

\(\Leftrightarrow3C=4^{101}-1\)

hay \(C=\dfrac{4^{101}-1}{3}\)

 

24 tháng 9 2017

\(A=2+2^2+2^3+....+2^{100}.\)

\(2A=2^2+2^3+...+2^{101}.\)

\(2A-A=\left(2^2+2^3+...+2^{101}\right)-\left(2+2^2+.....+2^{100}\right).\)

\(A=2^{101}-2\)

24 tháng 9 2017

\(B=3+3^2+...+3^{100}.\)

\(3B=3^2+3^3+...+3^{101}.\)

\(3B-B=\left(3^2+3^2+...+3^{101}\right)-\left(3+3^2+....+3^{100}\right).\)

\(2B=3^{101}-3\)

\(B=\frac{\left(3^{101}-3\right)}{2}\)

26 tháng 9 2015

mấy cái này dễ, tự lm ik

18 tháng 4 2016

b) B = 2100 - 299 + 298 - 297 + ...+ 22 - 2

=> B x 2 = 2101 - 2100 + 299 -  298  + ...23 - 22

=> B x 2 + B = (2101 - 2100 + 299 -  298  + ...23 - 22 ) + (2100 - 299 + 298 - 297 + ...+ 22 - 2)

  <=>  B x 3 = 2101 - 2 = 2. ( 299 - 1)

=> B = \(\frac{2.\left(2^{99}-1\right)}{3}\)

Phần c) Làm tương tự Lấy C x 3 rồi + với C.