K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 7 2016

=31/32

1 tháng 7 2016

=31/32

20 tháng 4 2020

khó quá làm sao mà trả lời đc

20 tháng 4 2020

Vắt óc đi

1 tháng 5 2019

\(A\cdot2=\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}...+\frac{1}{256}\right)\cdot2\)

\(=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}...+\frac{1}{128}\)

\(A\cdot2-A=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}...+\frac{1}{128}-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{256}\right)\)

\(A=1-\frac{1}{256}=\frac{255}{256}\)

1 tháng 5 2019

\(A=\frac{1}{2}+\frac{1}{4}+...+\frac{1}{256}\)

\(A=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^8}\)

\(2A=1+\frac{1}{2}+...+\frac{1}{2^7}\)

\(2A-A=\left(1+\frac{1}{2}+...+\frac{1}{2^7}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^8}\right)\)

\(A=1-\frac{1}{2^8}\)

\(A=\frac{2^8-1}{2^8}\)

\(A=\frac{255}{256}\)

9 tháng 10 2015

Ta có: \(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+\frac{1}{2^5}+\frac{1}{2^6}\)

=>2A=\(1+\frac{1}{2^2}+...+\frac{1}{2^4}+\frac{1}{2^5}\)

=>2A-A=(\(1+\frac{1}{2^2}+...+\frac{1}{2^4}+\frac{1}{2^5}\))--(\(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+\frac{1}{2^5}+\frac{1}{2^6}\))

=>A=\(1-\frac{1}{2^6}\)

=>A=\(\frac{63}{64}\)

9 tháng 10 2015

Nguyễn Đình Dũng chỉ được cái mồm

21 tháng 5 2017

A = 1 - 1/64 = 63/64 

tk nha

5 tháng 8 2016

\(=1-\frac{1}{256}=\frac{255}{256}\)

5 tháng 8 2016

Nhận xét :

1/2 = 1 - 1/2   ;   1/4 = 1/2 - 1/4   ;   1/8 = 1/4 - 1/8   ;   .....   ;   1/256 = 1/128 - 1/256

=> A = 1 - 1/2 + 1/2 - 1/4 + 1/4 - 1/8 + ..... + 1/128 - 1/256

=> A = 1 - 1/256 = 255/256

31 tháng 3 2017

quy đồngcác phân số lấy mẫu số là 512 .ta có tử số là 

256 +128 + 64 +32 +16 +8 +4 +2 +1 =495

A =\(\frac{495}{512}\)

31 tháng 3 2017

cho hỏi làm thế nào để nó ra phân số như thế kia zạ

8 tháng 7 2016

các bn ơi giải giúp mình đi mà

27 tháng 6 2016

\(S=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+...+\frac{1}{2^n}=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^n}\)

=>\(\frac{S}{2}=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{n+1}}\)

=> \(\frac{S}{2}-S=\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+..+\frac{1}{2^{n+1}}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+..+\frac{1}{2^n}\right)\)

=> \(-\frac{S}{2}=\frac{1}{2^{n+1}}-1\)

=> S= \(2-\frac{1}{2^n}\)