Cho phương trình d: y = (m + 1)x - m ( m là tham số) và Parabol (P): y = 1/2 x2
1) Tìm m để đường thẳng d cắt trục hoành tại điểm có hoành độ bằng 2.
2) Tìm m để đường thẳng d cắt (P) tại 2 điểm phân biệt có hoành độ x1, x2 thỏa mãn căn x1 + căn x2 = căn 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, Do hàm số trên cắt trục hoành tại điểm có hoành độ bằng 3 hay hàm số trên đi qua A(3;0)
<=> \(0=6+b\Leftrightarrow b=-6\)
2, Hoành độ giao điểm (P) ; (d) tm pt
\(x^2-\left(m-1\right)x-m+4=0\)
Để (P) cắt (d) tại 2 điểm pb nằm về 2 phía trục tung khi pt có 2 nghiệm trái dấu hay
\(x_1x_2=-m+4< 0\Leftrightarrow-m< -4\Leftrightarrow m>4\)
a: Thay m=3 vào (d), ta được:
y=3x-3+1=3x-2
Tọa độ giao điểm của (P) và (d) là:
\(\left\{{}\begin{matrix}x^2-3x+2=0\\y=x^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)\left(x-2\right)=0\\y=x^2\end{matrix}\right.\Leftrightarrow\left(x,y\right)\in\left\{\left(1;1\right);\left(2;4\right)\right\}\)
b: Phương trình hoành độ giao điểm là:
\(x^2-mx+m-1=0\)
Để (P) cắt (d) tại hai điểm về hai phía của trục tung thì m-1<0
hay m<1
c: Để (P) cắt (d) tại hai điểm phân biệt có hoành độ dương thì
\(\left\{{}\begin{matrix}\left(-m\right)^2-4\left(m-1\right)>0\\m>0\\m-1>0\end{matrix}\right.\Leftrightarrow m>1\)
a: PTHĐGĐ là:
x^2-2x-|m|-1=0
a*c=-|m|-1<0
=>(d)luôn cắt (P) tại hai điểm phân biệt
b: Bạn bổ sung lại đề đi bạn
a. Em tự giải
b.
Phương trình hoành độ giao điểm (d) và (P):
\(x^2=\left(m+2\right)x-m+3\Leftrightarrow x^2-\left(m+2\right)x+m-3=0\)
\(\Delta=\left(m+2\right)^2-4\left(m-3\right)=m^2+16>0;\forall m\)
(d) cắt (P) tại 2 điểm phân biệt với mọi m
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m+2\\x_1x_2=m-3\end{matrix}\right.\)
\(x_1^2+x_2^2+x_1x_2\le5\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-x_1x_2\le5\)
\(\Leftrightarrow\left(m+2\right)^2-\left(m-3\right)\le5\)
\(\Leftrightarrow m^2+3m+2\le0\)
\(\Leftrightarrow\left(m+1\right)\left(m+2\right)\le0\)
\(\Rightarrow-2\le m\le-1\)
a: khi m=3 thì (d): y=5x
PTHĐGĐ là:
x^2=5x
=>x=0 hoặc x=5
=>y=0 hoặc y=25
b:
PTHĐGĐ là:
x^2-(m+2)x+m+3=0
Δ=(m+2)^2-4(m+3)
=m^2+4m+4-4m-12=m^2-8
Để (d) cắt (P) tại 2 điểm pb thì m^2-8>0
=>m>2 căn 2 hoặc m<-2 căn 2
x1^2+x2^2+x1x2<=5
=>(x1+x2)^2-x1x2<=5
=>(m+2)^2-m-3<=5
=>m^2+4m+4-m-3-5<=0
=>m^2+3m-4<=0
=>(m+4)(m-1)<=0
=>-4<=m<=1
Sửa đề: (d'): y=-4x+3
a: Thay x=0 và y=0 vào y=(m+2)x+m, ta được:
\(0\left(m+2\right)+m=0\)
=>m=0
b:
Sửa đề: Để đường thẳng (d)//(d')
Để (d)//(d') thì \(\left\{{}\begin{matrix}m+2=-4\\m\ne3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m=-6\\m\ne3\end{matrix}\right.\)
=>m=-6
c: Sửa đề: cắt đường thẳng d'
Để (d) cắt (d') thì \(m+2\ne-4\)
=>\(m\ne-6\)
d: Để (d) trùng với (d') thì
\(\left\{{}\begin{matrix}m+2=-4\\m=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=-6\\m=3\end{matrix}\right.\)
=>\(m\in\varnothing\)
Phương trình hoành độ giao điểm:
\(-\dfrac{1}{2}x^2=mx+m-3\Leftrightarrow x^2+2mx+2m-6=0\) (1)
a. Khi \(m=-1\), (1) trở thành:
\(x^2-2x-8=0\Rightarrow\left[{}\begin{matrix}x=4\Rightarrow y=-8\\x=-2\Rightarrow y=-2\end{matrix}\right.\)
Vậy (d) cắt (P) tại 2 điểm có tọa độ là \(\left(4;-8\right)\) ; \(\left(-2;-2\right)\)
b.
\(\Delta'=m^2-2m+6=\left(m+1\right)^2+5>0;\forall m\Rightarrow\left(1\right)\) có 2 nghiệm pb với mọi m
Hay (d) cắt (P) tại 2 điểm pb với mọi m
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-2m\\x_1x_2=2m-6\end{matrix}\right.\)
\(x_1^2+x_2^2=14\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=14\)
\(\Leftrightarrow4m^2-2\left(2m-6\right)=14\)
\(\Leftrightarrow4m^2-4m-2=0\Rightarrow m=\dfrac{1\pm\sqrt{3}}{2}\)
Thay x=-1 vào (P), ta được:
y=-2*(-1)^2=-2
Thay x=-1và y=-2 vào (d), ta được:
-(m+1)-m-3=-2
=>-m-1-m-3=-2
=>-2m-4=-2
=>2m+4=2
=>m=-1
1: Tọa độ A là:
y=0 và 4x+m-3=0
=>x=(-m+3)/4 và y=0
=>OA=|m-3|/4
Tọa độ B là:
x=0 và y=m-3
=>OB=|m-3|
Theo đề, ta có: 1/2*(m-3)^2/4=9
=>(m-3)^2/4=18
=>(m-3)^2=72
=>\(m=\pm6\sqrt{2}+3\)
2:
PTHĐGĐ là:
x^2-4x-m+3=0
Δ=(-4)^2-4*(-m+3)=16+4m-12=4m+4
Để (P) cắt (d) tại hai điểm phân biệt thì 4m+4>0
=>m>-1
(4-x1)(x2-1)=2
=>4x2-4-x1x2+1=2
=>x2(x1+x2)-3-(-m+3)=2
=>x2*4-3+m-3=2
=>x2*4=2-m+6=8-m
=>x2=2-1/2m
=>x1=4-2+1/2m=1/2m+2
x1*x2=-m+3
=>-m+3=(1/2m+2)(2-1/2m)=4-1/4m^2
=>-m+3-4+1/4m^2=0
=>1/4m^2-m-1=0
=>m^2-4m-4=0
=>\(m=2\pm2\sqrt{2}\)