1/1.2+1/2.3+1/3.4+...+1/198.199
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\dfrac{5}{13}\left(\dfrac{6}{29}-\dfrac{26}{39}\right)-\dfrac{6}{29}\cdot\left(\dfrac{5}{13}-\dfrac{29}{6}\right)\)
\(=\dfrac{5}{13}\cdot\dfrac{6}{29}-\dfrac{5}{13}\cdot\dfrac{26}{39}-\dfrac{6}{13}\cdot\dfrac{5}{13}+\dfrac{6}{29}\cdot\dfrac{29}{6}\)
\(=\dfrac{-5}{39}\cdot2+1=1-\dfrac{10}{39}=\dfrac{29}{39}\)
b: \(\dfrac{1\cdot198+2\cdot197+3\cdot196+...+198\cdot1}{1\cdot2+2\cdot3+...+198\cdot199}\)
\(=\dfrac{1\left(199-1\right)+2\left(199-2\right)+...+198\cdot\left(199-198\right)}{1\left(1+1\right)+2\left(1+2\right)+...+198\left(1+198\right)}\)
\(=\dfrac{199\left(1+2+...+198\right)-\left(1^2+2^2+...+198^2\right)}{\left(1+2+...+198\right)+\left(1^2+2^2+...+198^2\right)}\)
\(=\dfrac{199\cdot\dfrac{198\cdot199}{2}-\dfrac{198\cdot\left(198+1\right)\cdot\left(2\cdot198+1\right)}{6}}{198\cdot\dfrac{199}{2}+\dfrac{198\left(198+1\right)\left(2\cdot198+1\right)}{6}}\)
\(=\dfrac{3\cdot198\cdot199^2-198\cdot199\cdot397}{6}:\dfrac{3\cdot198\cdot199+198\cdot199\cdot397}{6}\)
\(=\dfrac{198\cdot199\left(3\cdot199-397\right)}{198\cdot199\left(3+397\right)}\)
\(=\dfrac{200}{400}=\dfrac{1}{2}\)
Bài 5:
a) Ta có: \(A=1\cdot2+2\cdot3+3\cdot4+...+9\cdot10\)
\(\Leftrightarrow3\cdot A=3\cdot\left(1\cdot2+2\cdot3+3\cdot4+...+9\cdot10\right)\)
\(\Leftrightarrow3A=1\cdot2\cdot\left(3-0\right)+2\cdot3\cdot\left(4-1\right)+3\cdot4\cdot\left(5-2\right)+...+9\cdot10\cdot\left(11-8\right)\)
\(\Leftrightarrow3A=1\cdot2\cdot3+2\cdot3\cdot4-1\cdot2\cdot3+3\cdot4\cdot5-2\cdot3\cdot4+...+8\cdot9\cdot10-8\cdot9\cdot10+9\cdot10\cdot11\)
\(\Leftrightarrow3\cdot A=9\cdot10\cdot11=90\cdot11=990\)
hay A=330
Vậy: A=330
Cho A=1/1.2 + 1/2.3 + + 1/ 3.4+...+1/49.50 ; B = 1.2+2.3+3.4+4.5+5.6+...+49.50
Tính 50 mủ 2 A – B/17
1.Tính
A= (1-1/22).(1-1/32)...(1-1/1002)
B= -1/1.2-1/2.3-1/3.4-...-1/100.101
C= 1.2+2.3+3.4+...+100.101
Lời giải :
Đặt S=1.2+2.3+3.4+4.5+…+99.100+100.101
3S=1.2.3+2.3.3+3.4.3+4.5.3+…+99.100.3+100.101.3
=1.2(3−0)+2.3(4−1)+3.4(5−2)+4.5(6−3)+…+99.100(101−98)+100.101(102−99)
=0.1.2-1.2.3+1.2.3-2.3.4+...+99.100.101-100.101.102
=100.101.102
S=100.101.34=343400
1.Tính
a) Ta có:
A=(1-1/22).(1-1/32)...(1-1/1002)
=>A=3/22.8/32.....9999/1002
=>A=(1.3/2.2).(2.4/3.3).....(99.101/100.100)
=>A=(1.2.3.....99/2.3.4.....100).(3.4.5.....101/2.3.4.....100)
=>A=1/100.101/2
=>A=101/200
b) Ta có:
B=-1/1.2-1/2.3-1/3.4-...-1/100.101
=>B=-(1/1.2+1/2.3+1/3.4+...+1/100.101)
=>B=-(1-1/2+1/2-1/3+1/3-1/4+...+1/100-1/101)
=>B=-(1-1/101)
=>B=-100/101
c) Ta có:
C=1.2+2.3+3.4+...+100.101
=>3C=1.2.3+2.3.3+3.4.3+...+100.101.3
=>3C=1.2.3+2.3.(4-1)+3.4.(5-2)+...+100.101.(102-99)
=>3C=1.2.3-1.2.3+2.3.4-2.3.4+3.4.5-3.4.5+...+100.101.102
=>3C=100.101.102
=>3C=1030200
=>C=343400
Chúc bạn hok tốt nhé >:)!!!!!
3C=1.2.3+2.3.(4-1)+3.4.(5-2)+...+2014.2015.(2016-2013)
3C=2014.2015.2016
C=2014.2015.2016:3
Ta thấy:\(\frac{1}{1.2}=1-\frac{1}{2},\frac{1}{2.3}=\frac{1}{2}-\frac{1}{3},...,\frac{1}{49.50}=\frac{1}{49}-\frac{1}{50}\)
=>\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
=>\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
=>\(A=1-\frac{1}{50}\)
=>\(A=\frac{49}{50}\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(\Rightarrow A=1-\frac{1}{50}\)
\(\Rightarrow A=\frac{49}{50}\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
\(=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{50-49}{49.50}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(=1-\frac{1}{50}=\frac{49}{50}\)
\(B=1.2+2.3+3.4+...+49.50\)
\(3B=1.2.3+2.3.3+3.4.3+...+49.50.3\)
\(=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+49.50.\left(51-48\right)\)
\(=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+49.50.51-48.49.50\)
\(=49.50.51\)
\(B=\frac{49.50.51}{3}=49.50.17\)
\(50^2.A-\frac{B}{17}=49.50-49.50=0\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\\ =1-\dfrac{1}{100}=\dfrac{99}{100}\)
=1/1-1/2+1/2-1/3+1/3-1/4+....+1/99-1/100
=1-1/100
=99/100
1/1.2 + 1/2.3 + 1/3.4 + ... + 1/99.100
= 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/99 - 1/100
= 1 - 1/100
= 99/100
Máy mình đang lỗi nên không gõ được công thức, xin lỗi bạn nhé! :'(
\(\frac{1}{1\times2}+\frac{1}{2\times3}+...+\frac{1}{198\times199}\)
\(=\frac{2-1}{1\times2}+\frac{3-2}{2\times3}+...+\frac{199-198}{198\times199}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{198}-\frac{1}{199}\)
\(=1-\frac{1}{199}\)
\(=\frac{198}{199}\)