tinh : (1.2 +2.3+3.4+...+2010.2011.2011+2012) +( 1+2+3+...+2011+2012) =
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow x\cdot\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2011}-\dfrac{1}{2012}\right)=2011\)
\(\Leftrightarrow x\cdot\dfrac{2011}{2012}=2011\)
hay x=2012
\(\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2011.2012}\right)x=2011\)
\(\left(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2011}-\dfrac{1}{2012}\right)x=2011\)
\(\left(\dfrac{1}{1}-\dfrac{1}{2012}\right)x=2011\)
\(\dfrac{2011}{2012}x=2011\)
\(x=2012\)
1/ (69.210+1210)+(219.273+15.49.94) = 29.39.210+310.220+219.39+5.3.218.38 = 219.39+310.220+219.39+5.218.39
= 218.39(2+3.22+5)=19.218.39
Theo bài ra ta có :
\(A=\frac{2011}{1.2}+\frac{2011}{3.4}+\frac{2011}{4.5}+...+\frac{2011}{1999.2000}\)
\(\Rightarrow\frac{A}{2011}=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{1999.2000}\)
\(\Rightarrow\frac{A}{2011}=\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{1999}-\frac{1}{2000}\)
\(\Rightarrow\frac{A}{2011}=\left(\frac{1}{1}+\frac{1}{3}+...+\frac{1}{1999}\right)+\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{2000}\right)\)
\(\Rightarrow\frac{A}{2011}=\left(\frac{1}{1}+\frac{1}{2}+...+\frac{1}{2000}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2000}\right)\) \(-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2000}\right)\)
\(\Rightarrow\frac{A}{2011}=\left(\frac{1}{1}+\frac{1}{2}+...+\frac{1}{2000}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2000}\right)\)
\(\Rightarrow\frac{A}{2011}=\left(\frac{1}{1}+\frac{1}{2}+...+\frac{1}{2000}\right)-\left(\frac{1}{1}+\frac{1}{2}+...+\frac{1}{1000}\right)\)
\(\Rightarrow\frac{A}{2011}=\frac{1}{1001}+\frac{1}{1002}+...+\frac{1}{2000}\)
\(\Rightarrow A=2011\left(\frac{1}{1001}+\frac{1}{1002}+...+\frac{1}{2000}\right)\left(1\right)\)
Ta lại có :
\(B=\frac{2012}{1001}+\frac{2012}{1002}+...+\frac{2012}{2000}\)
\(\Rightarrow B=2012\left(\frac{1}{1001}+\frac{1}{1002}+...+\frac{1}{2000}\right)\)\(\left(2\right)\)
Từ (1) và (2) => A < B
Vậy A < B
b) \(\left(\sqrt{2x+3}-3\right)+\left(\sqrt{x+1}-2\right)+5=3x+2\left(\sqrt{2x^2+5x+3}-6\right)+12-16\)
\(\Leftrightarrow\left(\sqrt{2x+3}-3\right)+\left(\sqrt{x+1}-2\right)=3\left(x-3\right)+2\left(\sqrt{2x^2+5x+3}-6\right)\)
\(\Leftrightarrow\frac{2\left(x-3\right)}{\sqrt{2x+3}+3}+\frac{x-3}{\sqrt{x+1}+2}-3\left(x-3\right)-\frac{2\left(x-3\right)\left(2x+11\right)}{\sqrt{2x^2+5x+3}+6}=0\Leftrightarrow x-3=0\Leftrightarrow x=3.\)