K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2016

Cách 1:\(a^2=bc\Rightarrow\frac{a}{b}=\frac{c}{a}\)

Đặt \(\frac{a}{b}=\frac{c}{a}=k\)

\(\Rightarrow\hept{\begin{cases}a=bk\\c=ak\end{cases}}\)

Thay vào rồi chứng minh

Cách 2:\(a^2=bc\Rightarrow\frac{a}{b}=\frac{c}{a}\Rightarrow\frac{a}{c}=\frac{b}{a}\)

\(=\frac{a+b}{c+a}=\frac{a-b}{c-a}\)

\(\Rightarrow\frac{a+b}{a-b}=\frac{a+a}{c-a}\)

11 tháng 8 2019

ban can gap ko

11 tháng 8 2019

ko mai

5 tháng 10 2016

Mình ko biết vì chưa học!!!

Cũng là bạn bè thì chỉ có thể nói:

Chúc cậu may mắn trong khi giải bài toán này!!!

Có ai giúp cậu ấy nha!!!

19 tháng 5 2018

sos là ra ez

19 tháng 5 2018

là sao ?

7 tháng 7 2019

a) \(\left(a+b+c\right)^2=3\left(ab+bc+ac\right)\) 

  \(a^2+b^2+c^2+2ab+2ac+2bc-3ab-3ac-3bc=0\) 

 \(a^2+b^2+c^2-ab-ac-bc=0\) 

\(2\left(a^2+b^2+c^2-ab-ac-bc\right)=0\) 

 \(2a^2+2b^2+2c^2-2ab-2ac-2bc=0\) 

\(\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(b^2-2bc+c^2\right)=0\) 

\(\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2=0\) 

\(\Rightarrow a=b=c\left(đpcm\right)\)

10 tháng 10 2015

Ta có : a+b/b+c = c+d/d+a  

=> (a+b)/(c+d)= (b+c)/(d+a)  

=> (a+b)/(c+d)+1=(b+c)/(d+a)+1  

hay: (a+b+c+d)/(c+d)=(b+c+d+a)/(d+a)

 - Nếu a+b+c+d khác 0 thì : c+d=d+a => c=a  

- Nếu a+b+c+d = 0 (điều phải chứng minh)