K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2016

\(x^2+2\times x\times\frac{1}{2}+\frac{1}{4}-\frac{1}{4}+1=\left(X+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\)

Với mọi x thì biểu thức đều có nghĩa

AH
Akai Haruma
Giáo viên
30 tháng 4 2023

Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để được hỗ trợ tốt hơn.

9 tháng 8 2020

\(x\in\left(2;+\infty\right)\)

18 tháng 6 2017

Đẳng thức có nghĩa \(\Leftrightarrow2x^2+6\ge0\)

Mà: \(x^2\ge0\forall x\)

\(\Rightarrow2x^2\ge0\forall x\)

\(\Rightarrow2x^2+6>0\forall x\)

Vậy đẳng thức luôn có nghĩa

18 tháng 6 2017

vì 2x^2 luôn lớn hơn 0 suy ra x k cần đk để căn thức có nghĩa

19 tháng 6 2017

Đẳng thức có nghĩa \(2x^2+6\ge0\)

Ma \(^{x^2\ge0\forall x}\)

=>\(2x^2\ge0\forall x\)

=>\(2x^2+6\ge0\forall x\)

Vậy đẳng thức thì luôn có nghĩa

21 tháng 7 2016

a/ 

\(A=\sqrt{x+2}.\sqrt{x-3}\) 

ĐKXĐ: \(\hept{\begin{cases}x+2\ge0\\x-3\ge0\end{cases}\Rightarrow\hept{\begin{cases}x\ge-2\\x\ge3\end{cases}\Rightarrow}x\ge3}\)

\(B=\sqrt{\left(x+2\right)\left(x-3\right)}\)

ĐKXĐ: \(\hept{\begin{cases}x+2\ge0\\x-3\ge0\end{cases}\Rightarrow\hept{\begin{cases}x\ge-2\\x\ge3\end{cases}\Rightarrow}x\ge3}\)

b/ A = B \(\Leftrightarrow\sqrt{x+2}.\sqrt{x-3}=\sqrt{\left(x+2\right)\left(x-3\right)}\)

\(\Rightarrow\sqrt{\left(x+2\right)\left(x-3\right)}=\sqrt{\left(x+2\right)\left(x-3\right)}\) (đúng)

                           Vậy với mọi giá trị của \(x\in R\) thì A = B

21 tháng 7 2016

ukm,,,vĩ cố phát huy nha

AH
Akai Haruma
Giáo viên
24 tháng 6 2018

Lời giải:

1)

Để biểu thức có nghĩa thì:

\(2x^2-5x+3\geq 0\)

\(\Leftrightarrow 2x(x-1)-3(x-1)\geq 0\)

\(\Leftrightarrow (2x-3)(x-1)\geq 0\)

\(\Leftrightarrow \left[\begin{matrix} x\geq \frac{3}{2}\\ x\leq 1\end{matrix}\right.\)

2)

\(\sqrt{6.5+\sqrt{12}}+\sqrt{6.5-\sqrt{12}}+2\sqrt{6}\)

\(=\sqrt{(\sqrt{6})^2+(\frac{1}{\sqrt{2}})^2+2\sqrt{6}.\frac{1}{\sqrt{2}}}+\sqrt{(\sqrt{6})^2+(\frac{1}{\sqrt{2}})^2-2\sqrt{6}.\frac{1}{\sqrt{2}}}+2\sqrt{6}\)

\(=\sqrt{(\sqrt{6}+\frac{1}{\sqrt{2}})^2}+\sqrt{(\sqrt{6}-\frac{1}{\sqrt{2}})^2}+2\sqrt{6}\)

\(=\sqrt{6}+\frac{1}{\sqrt{2}}+\sqrt{6}-\frac{1}{\sqrt{2}}+2\sqrt{6}=4\sqrt{6}\)

5 tháng 4 2016

Xét (delta)=(2m+1)^2-2m

              =4m^2+4m+1-2m

              =4m^2+2m+1(luôn lớn hôn hoặc bằng 0)

Suy ra phương trình đã cho luôn có nghiệm

Theo hệ thức Vi-ét có x1+x2=2(2m+1)

                                 x1.x2=2m

Theo bài ra có x1^2+x2^2=(2căn3)^2

                     (x1^2+x2^2)^2-2x1.x2=12

                     4(2m+1)^2-4m=12

                     16m^2+12m+4=12

                     16m^2+12m-8=0

Suy ra m=\(\frac{-3+\sqrt{41}}{8}\)hoặc m=\(\frac{-3-\sqrt{41}}{8}\)