K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2016

a/

\(2^{225}=\left(2^3\right)^{75}=8^{75}\)

\(3^{150}=\left(3^2\right)^{75}=9^{75}\)

\(8< 9\Rightarrow8^{75}< 9^{75}\Rightarrow2^{225}< 3^{150}\)

b/

\(12^8.9^{12}=\left(2^2\right)^8.3^8.\left(3^2\right)^{12}=2^{16}.3^{32}\)

\(18^{16}=2^{16}.\left(3^2\right)^{16}=2^{16}.3^{32}\)

\(\Rightarrow12^8.9^{12}=18^{16}\)

c/

\(45^{10}.5^{30}=\left(3^2\right)^{10}.5^{10}.5^{30}=3^{20}.5^{40}\)

\(75^{20}=3^{20}.\left(5^2\right)^{20}=3^{20}.5^{40}\)

\(\Rightarrow45^{10}.5^{30}=75^{20}\)

23 tháng 8 2021

Bài 8:

a) \(2^{225}=\left(2^3\right)^{75}=8^{75}\)

\(3^{150}=\left(3^2\right)^{75}=9^{75}\)

Vì \(8^{75}< 9^{75}\Rightarrow2^{225}< 3^{150}\)

b) \(2^{91}=\left(2^{13}\right)^7=8192^7\)

\(5^{35}=\left(5^5\right)^7=3125^7\)

Vì \(8192^7>3125^7\Rightarrow2^{91}>5^{35}\)

c) \(99^{20}=\left(99^2\right)^{10}=9801^{10}< 9999^{10}\)

14 tháng 1 2018

7520 = 4510.530

Ta có: 4510.530 = (9.5)10.530 = 910.510.530 = (32)10.540

=320.(52)20 = 320.2520 = (3.25)20 = 7520

Vế phải bằng vế trái nên đẳng thức được chứng minh

NV
28 tháng 12 2021

\(A=1+2+2^2+...+2^{2022}\)

\(\Rightarrow2A=2+2^2+...+2^{2023}\)

\(\Rightarrow2A-A=2^{2023}-1\)

\(\Rightarrow A=2^{2023}-1\)

\(\Rightarrow A< 2^{2023}=2^2.2^{2021}=4.2^{2021}< 5^{2021}\)

\(\Rightarrow A< B\)

3 tháng 2 2021

a/ \(2^{225}=\left(2^3\right)^{75}=8^{75}\)

\(3^{151}>3^{150}=\left(3^2\right)^{75}=9^{75}\)

Mà \(8^{75}< 9^{75}\)

=> \(2^{225}< 3^{150}< 3^{151}\)

b/ Xét n là số lẻ

=> n + 1 chẵn

=> n + 1 ⋮ 2

=> (n+1)(3n+2) ⋮2

Xét n là số chẵn

=> 3n chẵn

=> 3n+2 chẵn

=> (n+1)(3n+2) ⋮2

Do đó A = (n+1)(3n+2) chia hết cho 2 với mọi số tự nhiên n 

\(\text{#040911}\)

\(a,\)

\(202^{303}\text{ và }303^{202}\)

Ta có:

\(202^{303}=\left(202^3\right)^{101}=\left(101^3\cdot2^3\right)^{101}=\left(101^3\cdot8\right)^{101}\)

\(303^{202}=\left(303^2\right)^{101}=\left(101^2\cdot3^2\right)^{101}=\left(101^2\cdot9\right)^{101}\)

Ta có:

\(8\cdot101^3=8\cdot101\cdot101^2=808\cdot101^2\)

Vì \(808>9\)

\(\Rightarrow808\cdot101^2>9\cdot101^2\)

\(\Rightarrow202^{303}>303^{202}\)

\(b,\)

Ta có:

\(11^{1979}< 11^{1980}=\left(11^3\right)^{660}=1331^{660}\\ 37^{1320}=\left(37^2\right)^{660}=1369^{660}\\ \text{Vì }1331< 1369\\ \Rightarrow1331^{660}< 1369^{660}\\ \Rightarrow11^{1979}< 37^{1320}\)

8 tháng 9 2023

mình cần gấp, giúp mình với 

HQ
Hà Quang Minh
Giáo viên
10 tháng 10 2023

a) \(\left( { + 4} \right).\left( { - 8} \right)\) là tích của hai số nguyên khác dấu nên mang dấu âm. Vậy \(\left( { + 4} \right).\left( { - 8} \right) < 0\)

b) \(\left( { - 3} \right).4\) là tích của hai số nguyên khác dấu nên mang dấu âm. Vậy\(\left( { - 3} \right).4 < 4\)

c) \(\left( { - 5} \right).\left( { - 8} \right)\) là tích của hai số nguyên âm nên \(\left( { - 5} \right).\left( { - 8} \right) = 5.8\)

\(\left( { + 5} \right).\left( { + 8} \right)\) là tích của hai số nguyên dương nên \(\left( { + 5} \right).\left( { + 8} \right) = 5.8\)

Vậy \(\left( { - 5} \right).\left( { - 8} \right) = \left( { + 5} \right).\left( { + 8} \right)\).

15 tháng 10 2021

a)

\(\dfrac{M_C}{M_H}=\dfrac{12}{1}=12>1\)

Do đó nguyên tử nặng hơn nguyên tử hidro 12 lần

b)

\(\dfrac{M_{Mg}}{M_{Zn}}=\dfrac{24}{65}=0,37< 1\)

Nguyên tử Magie nhẹ hơn nguyên tử Kẽm 0,37 lần

c)

\(\dfrac{M_P}{M_{Pb}}=\dfrac{31}{207}=0,15< 1\)

Nguyên tử photpho nhẹ hơn nguyên tử chì 0,15 lần

3 tháng 3 2017

\(A=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2011^2}\)

Có \(\frac{1}{2^2}< \frac{1}{1.2}\)

\(\frac{1}{3^2}< \frac{1}{2.3}\)

......

\(\frac{1}{2011^2}< \frac{1}{2010.2011}\)

=> \(A< \frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{2010.2011}\)

=> \(A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{2010}-\frac{1}{2011}\)

=> \(A< 1-\frac{1}{2011}< 1\)

=> A < 1

=> A < B

15 tháng 11 2021

A < B

16 tháng 11 2021

Vì sao vậy bạn ???

4 tháng 10 2018

\(A=1+5+5^2+5^3+..+5^{100}\)

\(5A=5+5^2+5^3+..+5^{101}\)

\(A=\frac{5^{101}-1}{4}\)\(SUYRA\) \(A< B\)

4 tháng 10 2018

\(A=5^0+5+5^2+...+5^{100}.\)

\(\Rightarrow5A=5+5^2+5^3+...+5^{101}\)

\(\Rightarrow5A-A=4A=\left(5+5^2+5^3+...+5^{101}\right)-\left(5^0+5+5^2+...+5^{100}\right)\)

                                \(=5^{101}-1\)

\(\Rightarrow A=\frac{5^{101}-1}{4}\)

Còn lại tự lm nha bn