K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6 2016

A= 4(a+b)=4.5=20

B=12(a+b)+7(a+b)=12.5+7.5=95

12 tháng 10 2019

Sửa đề: chứng minh:\(\frac{a^2}{\sqrt{12b^2+11bc+2c^2}}+\frac{b^2}{\sqrt{12c^2+11ca+2a^2}}+\frac{c^2}{\sqrt{12a^2+11ca+2b^2}}\ge\frac{3}{5}\)

Ta có: \(12b^2+11bc+2c^2=\frac{1}{4}\left(7b+3c\right)^2-\frac{1}{4}\left(b-c\right)^2\le\frac{1}{4}\left(7b+3c\right)^2\)

Do đó: \(\frac{a^2}{\sqrt{12b^2+11bc+2c^2}}\ge\frac{2a^2}{7b+3c}\).Tương tự hai BĐT còn lại rồi cộng theo vế thu được:

\(VT\ge\frac{2a^2}{7b+3c}+\frac{2b^2}{7c+3a}+\frac{2c^2}{7a+3b}\)

\(=2\left(\frac{a^2}{7b+3c}+\frac{b^2}{7c+3a}+\frac{c^2}{7a+3b}\right)\ge\frac{2\left(a+b+c\right)^2}{10\left(a+b+c\right)}=\frac{3}{5}\)(áp dụng BĐT Cauchy-Schwarz dạng Engel)

Ta có đpcm. Đẳng thức xảy ra khi a = b = c = 1

P/s: Is that true? Thấy đề nó là lạ nên sửa thôi chứ ko chắc rằng mình sửa đúng..

13 tháng 10 2019

@Cool Kid: Cách của mình"

Đầu tiên ta xét hiệu: \(12b^2+11bc+2c^2-x\left(b-c\right)^2\). Ta chọn x để biểu thức sau khi phân tích có dạng một số chính phương.

\(=\left(12-x\right)b^2+\left(11+2x\right)bc+\left(2-x\right)c^2\)

\(=\left(12-x\right)\left(b+\frac{\left(11+2x\right)c}{2\left(12-x\right)}\right)^2+\left(2-x\right)c^2-\frac{\left(11+2x\right)^2c^2}{4\left(12-x\right)}\)

\(=\left(12-x\right)\left(b+\frac{\left(11+2x\right)c}{2\left(12-x\right)}\right)^2+c^2\left[\left(2-x\right)-\frac{\left(11+2x\right)^2}{4\left(12-x\right)}\right]\)

Đến đây thì ý tưởng đã rõ, ta chọn x sao cho 12 - x > 0 và:

\(\left(2-x\right)-\frac{\left(11+2x\right)^2}{4\left(12-x\right)}=0\). Bấm máy tính ta suy ra \(x=-\frac{1}{4}\)

Từ đó có thể dễ dàng suy ra cách phân tích bên trên

3 tháng 1 2019

Nếu a + b + c = 0 thì \(a+b+5=0,b+c-10=0,a+c+5=0\)

Tìm được a = -10 , b = 5 và c = 5

Khi đó: \(A=\left(-25\right).\left(-10\right)+12.5-2018.5=250+60-10090=-9780\)

Nếu \(a+b+c\ne0\) thì áp dụng t/c dãy tỉ số bằng nhau: 

\(\frac{a+b+c}{2}=\frac{a+b+5}{4c}=\frac{b+c-10}{4a}=\frac{a+c+5}{4b}\)

\(=\frac{\left(a+b+5\right)+\left(b+c-10\right)+a+c+5}{4c+4a+4b}=\frac{2\left(a+b+c\right)}{4\left(a+b+c\right)}=\frac{1}{2}\)(1)

Tìm được a + b + c = 1

Từ (1), ta được: \(\frac{a+b+5}{4c}=\frac{1}{2}\Rightarrow2a+2b+10=4c\)

\(\Rightarrow2\left(a+b+c\right)+10=4c+2c\Rightarrow12=6c\Rightarrow c=2\)

TỪ (1) cũng có: \(\frac{b+c-10}{4a}=\frac{1}{2}\Rightarrow2b+2c-20=4a\)

\(\Rightarrow2\left(a+b+c\right)-20=6a\Rightarrow-18=6a\Rightarrow a=-3\)

\(a+b+c=1\Rightarrow\left(-3\right)+b+2=1\Rightarrow b=2\)

Khi đó: \(A=\left(-25\right).\left(-3\right)+12.2-2018.2=75+24-4036=-3937\)

Vậy A = -9780 hoặc A = -3937

10 tháng 7 2019

\(14a-7b+4=7\left(2a-b+1\right)-3⋮7̸\)\(\Rightarrow4a+2b+1⋮7\Leftrightarrow4a+21a+2b-14b+1+7⋮7\Leftrightarrow25a-12b+8⋮7\)

10 tháng 7 2019

\(14a-7b+4=7\times\left(2a-b\right)+4⋮̸7\)

\(\left(14a-7b+4\right)\left(4a+2b+1\right)⋮7\)

\(\Rightarrow4a+2b+1⋮7\)

\(21a-14b+7⋮7\)

\(\Rightarrow\left(4a+2b+1\right)+\left(21a-14b+7\right)⋮7\)

\(\Rightarrow\left(4a+21a\right)-\left(14b-2b\right)+\left(1+7\right)⋮7\)

\(\Rightarrow25a-12b+8⋮7\)

a)12a + 36b = 2(6a + 18b) chia hết cho 2

3211 không chia hết cho 2

=> không tìm được a,b thỏa mãn đề.

 

b)Đặt A=2a+7b

         B=4a+2b

xét hiệu:2A-B=2.(2a+7b)-(4a+2b)

=4a+14b-4a-2b

=12b

Vì A ⋮3 nên 2a⋮3;12b⋮3

⇒B⋮3 hay 4a+2b ⋮3(đpcm)

 

số số hạng từ 1 đến 144 là : 144 ( số )

Tổng dãy số là :

( 1 + 144 ) X 144 : 2 = 11088 

25 tháng 6 2017

a, 1+2+3+5+8+...+144

Nhận xét: Ta thấy trong tổng trên kể từ số thứ 3 trở đi thì số liền sau bằng tổng của 2 số liền trước.

"3=2+1;5=3+2;8=5+3;..."

Vậy tổng được viết đầy đủ là:

1+2+3+5+8+13+21+34+55+89+144

Ta tính tổng là: 1+2+3+5+8+13+21+34+55+89+144=365

Còn b,c thì ko biết

15 tháng 8 2020

Bài làm:

a) 2 + 5 + 8 + 11 + ... + 248 + 251 (đề thiếu số 8 nhé)

\(=\frac{\left(2+251\right).\left[\left(251-2\right)\div3+1\right]}{2}\)

\(=\frac{253.84}{2}=10626\)

15 tháng 8 2020

xin lỗi! nhưng đề bài là tính các tổng sau mà và đề của mh ko thiếu số 8 đâu nhé!!!

25 tháng 1 2016

a+b chia hết cho 5

\(\Rightarrow\)3a+3b chia hết cho 5

Xét hiệu:(3a+3b)-(3a-12b)=15b chia hết cho 5

\(\Rightarrow\)3a-12b chia hết cho 5 (vì 3a+3b chia hết cho 5)

Vậy 3a-12b chia hết cho 5

25 tháng 1 2016

a+b chia hết cho 5

=>3a+3b chia hết cho 5

xét hiệu: (3a+3b)-(3a-12b)=15b chia hết cho 5

=>3a-12b chia hết cho 5 ( vì 3a+3b chia hết cho 5)

vậy 3a-12b chia hết cho 5

17 tháng 9 2016

a ) 2575 + 37 - 2476 - 29

 = (2575 - 2476 ) +( 37 - 29)

 = {(2575 + 24) -( 2476 + 24)} + {37 + 1 ) -( 29 +1)}

 = ( 2599 - 2500 )+ (38 - 30)

 = 99 + 8 =107

b)34 +35 +36+37 - 14 -15 -16-17

 = (34 -14) + ( 35 -15 )+ (36 -16) +(37 -17)= 20 * 4= 80. [ Tích cho tui nha ! ]

17 tháng 9 2016

sao mình thấy nó hơi rắc rối