K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
7 tháng 7 2021

a. $6x^2-11x=x(6x-11)$
b. $x^7+x^5+1=(x^7-x)+(x^5-x^2)+x+x^2+1$

$=x(x^6-1)+x^2(x^3-1)+(x^2+x+1)$
$=x(x^3-1)(x^3+1)+x^2(x^3-1)+(x^2+x+1)$
$=(x^3-1)(x^4+x+x^2)+(x^2+x+1)$

$=(x-1)(x^2+x+1)(x^4+x^2+x)+(x^2+x+1)$
$=(x^2+x+1)[(x-1)(x^4+x^2+x)+1]$

$=(x^2+x+1)(x^5-x^4+x^3-x+1)$

AH
Akai Haruma
Giáo viên
7 tháng 7 2021

c.

$x^8+x^4+1=(x^4)^2+2.x^4+1-x^4$

$=(x^4+1)^2-(x^2)^2$

$=(x^4+1-x^2)(x^4+1+x^2)$

$=(x^4+1-x^2)(x^4+2x^2+1-x^2)$

$=(x^4-x^2+1)[(x^2+1)^2-x^2]$

$=(x^4-x^2+1)(x^2+1-x)(x^2+1+x)$

d.

$x^3-5x+8-4=x^3-5x+4$

$=x^3-x^2+x^2-x-(4x-4)$

$=x^2(x-1)+x(x-1)-4(x-1)=(x-1)(x^2+x-4)$

e.

$x^5+x^4+1=(x^5-x^2)+(x^4-x)+x^2+x+1$

$=x^2(x^3-1)+x(x^3-1)+x^2+x+1$

$=(x^3-1)(x^2+x)+(x^2+x+1)$
$=(x-1)(x^2+x+1)(x^2+x)+(x^2+x+1)$

$=(x^2+x+1)[(x-1)(x^2+x)+1]$

$=(x^2+x+1)(x^3-x+1)$

 

 

16 tháng 11 2021

\(1,\\ a,=6x^4-15x^3-12x^2\\ b,=x^2+2x+1+x^2+x-3-4x=2x^2-x-2\\ c,=2x^2-3xy+4y^2\\ 2,\\ a,=7x\left(x+2y\right)\\ b,=3\left(x+4\right)-x\left(x+4\right)=\left(3-x\right)\left(x+4\right)\\ c,=\left(x-y\right)^2-z^2=\left(x-y-z\right)\left(x-y+z\right)\\ d,=x^2-5x+3x-15=\left(x-5\right)\left(x+3\right)\\ 3,\\ a,\Leftrightarrow3x\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\\ b,\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)

16 tháng 11 2021

Câu 1

a)\(3x^2\left(2x^2-5x-4\right)=6x^4-15x^3-12x^2\)

b)\(\left(x+1\right)^2+\left(x-2\right)\left(x+3\right)-4x=x^2+2x+1+x^2+3x-2x-6-4x=2x^2-x-5\)

 

1A. Phân tích các đa thức sau thành nhân tử:a) x3+2x;                                           b) 3x - 6y;c) 5(x + 3y)- 15x(x + 3y);               d) 3(x-y)- 5x(y-x).1B. Phân tích các đa thức sau thành nhân tử:a) 4x2 - 6x;                                         b) x3y - 2x2y2 + 5xy; c) 2x2(x +1) + 4x(x +1);               d) 2 x(y - 1) - 2 y(1 - y). 5                  52A. Phân tích các đa thức sau thành nhân tử: a) 2(x -1)3 - 5(x -1)2 - (x - 1);b) x(y - x)3 - y(x - y)2 + xy(x -...
Đọc tiếp

1A. Phân tích các đa thức sau thành nhân tử:

a) x3+2x;                                           b) 3x - 6y;

c) 5(x + 3y)- 15x(x + 3y);               d) 3(x-y)- 5x(y-x).

1B. Phân tích các đa thức sau thành nhân tử:

a) 4x2 - 6x;                                         b) x3y - 2x2y2 + 5xy;

 

c) 2x2(x +1) + 4x(x +1);               d) 2 x(y - 1) - 2

 

y(1 - y).

 

5                  5

2A. Phân tích các đa thức sau thành nhân tử: a) 2(x -1)3 - 5(x -1)2 - (x - 1);

b) x(y - x)3 - y(x - y)2 + xy(x - y);

c) xy(x + y)- 2x - 2y;

d) x(x + y)2 - y(x + y)2 + y2 (x - y).

2B. Phân tích đa thức thành nhân tử: a) 4(2-x)2 + xy - 2y;

b) x(x- y)3 - y(y - x)2 - y2(x - y);

c) x2y-xy2 - 3x + 3y;

d) x(x + y)2 - y(x + y) 2 + xy - x 2 .

3

1A:

a: \(x^3+2x=x\left(x^2+2\right)\)

b: \(3x-6y=3\left(x-2y\right)\)

c: \(5\left(x+3y\right)-15x\left(x+3y\right)\)

\(=5\left(x+3y\right)\left(1-3x\right)\)

d: \(3\left(x-y\right)-5x\left(y-x\right)\)

\(=3\left(x-y\right)+5x\left(x-y\right)\)

\(=\left(x-y\right)\left(5x+3\right)\)

7 tháng 10 2021

1A. a. x(x2+2) 

b. 3(x-2y)

c. 5(x+3y)(1-3x) 

d. (x-y) (3-5x)

1B. a. 2x(2x-3)

b.xy(x2-2xy+5)

c. 2x(x+1)(x+2)

d. 2x(y-1)+2y(y-1)=2(y-1)(x-y)

 

11 tháng 10 2021

a: \(x^2-y^2-x-y\)

\(=\left(x-y\right)\left(x+y\right)-\left(x+y\right)\)

\(=\left(x+y\right)\left(x-y-1\right)\)

f: \(x^3-5x^2-5x+1\)

\(=\left(x+1\right)\left(x^2-x+1\right)-5x\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2-6x+1\right)\)

A(x)+B(x)=-2x^4+x^3+x^2+5x-5-x^4-3x^3+4x^2-6x+7

=-3x^4+4x^3+5x^2-x+2

A(x)-B(x)=-2x^4+x^3+x^2+5x-5+x^4+3x^3-4x^2+6x-7

=-x^4+4x^3-3x^2+11x-2

B(x)-C(x)

=-x^4-3x^3+4x^2-6x+7-x^3-x+2

=-x^4-4x^3+4x^2-7x+9

12 tháng 7 2023

\(a,=\left(5x^3+10x\right)+\left(x^4-4\right)\\ =5x\left(x^2+2\right)+\left(x^2+2\right)\left(x^2-2\right)\\ =\left(x^2+2\right)\left(x^2+5x-2\right)\\ b,=\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\\ =\left[\left(x+y\right)^3+z^3\right]-3xy\left(x+y+z\right)\\ =\left(x+y+z\right)\left[\left(x+y\right)^2-z\left(x+y\right)+z^2\right]-3xy\left(x+y+z\right)\\ =\left(x+y+z\right)\left(x^2+2xy+y-xz-yz+z^2-3xy\right)\\ =\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)

\(c,=\left(x^8+x^7+x^6\right)-\left(x^7+x^6+x^5\right)+\left(x^5+x^4+x^3\right)-\left(x^4+x^3+x^2\right)+\left(x^2+x+1\right)\\ =\left(x^2+x+1\right)\left(x^6-x^5+x^3-x^2+1\right)\\ d,=\left(x^7+x^6+x^5\right)-\left(x^6+x^5+x^4\right)+\left(x^4+x^3+x^2\right)-\left(x^3+x^2+x\right)+\left(x^2+x+1\right)\\ =\left(x^2+x+1\right)\left(x^5-x^4+x^2-x+1\right)\\ e,=\left(x^{10}+x^9+x^8\right)-\left(x^9+x^8+x^7\right)+\left(x^7+x^6+x^5\right)-\left(x^6+x^5+x^4\right)+\left(x^5+x^4+x^3\right)-\left(x^3+x^2+x\right)+\left(x^2+x+1\right)\\ =\left(x^2+x+1\right)\left(x^{10}-x^7+x^5-x^4+x^3-x+1\right)\)

a: =x^4+2x^2+5x^3+10x-2x^2-4

=(x^2+2)(x^2+5x-2)

b; =(x+y)^3+z^3-3xy(x+y)-3xyz

=(x+y+z)*(x^2+2xy+y^2-xz-yz+z^2)-3xy(x+y+z)

=(x+y+z)(x^2+y^2+z^2-xy-yz-xz)

c: =x^8+x^7+x^6-x^7-x^6-x^5+x^5+x^4+x^3-x^4-x^3-x^2+x^2+x+1

=(x^2+x+1)(x^6-x^5+x^3-x^2+1)

NV
15 tháng 12 2020

a.

\(1-4x^2=\left(1-2x\right)\left(1+2x\right)\)

b.

\(8-27x^3=\left(2\right)^3-\left(3x\right)^3=\left(2-3x\right)\left(4+6x+9x^2\right)\)

c.

\(27+27x+9x^2+x^3=x^3+3.x^2.3+3.3^2.x+3^3\)

\(=\left(x+3\right)^3\)

d.

\(2x^3+4x^2+2x=2x\left(x^2+2x+1\right)=2x\left(x+1\right)^2\)

e.

\(x^2-y^2-5x+5y=\left(x-y\right)\left(x+y\right)-5\left(x-y\right)\)

\(=\left(x-y\right)\left(x+y-5\right)\)

f.

\(x^2-6x+9-y^2=\left(x-3\right)^2-y^2=\left(x-3-y\right)\left(x-3+y\right)\)

1 tháng 7 2021

g. 10x(x-y)-6y(y-x)

=10x(x-y)+6y(x-y)

=(x-y)(10x+6y)

h.x2-4x-5

=(x-5)(x+1)

i.x4-y= (x2-y2)(x2+y2)

 

 

19 tháng 1 2022

\(\left(x+y+z\right)^5-x^5-y^5-z^5\\ =1^5\left(x+y+z\right)-x-y-z\\ =x+y+z-x-y-z\\ =0\)