Tìm tất cả các số n thuộc N để phân số 18n+3/21n+7 có thể rút gọn được?
(Toán lớp 2)(chép mk ko tick)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm tất cả các số n thuộc N để phân số 18n+3/21n+7 có thể rút gọn được?
(Toán lớp 2)(chép mk ko tick)
Gọi k là ước chung nguyên tố của 18n + 3 và 21n +7
=> 18n + 3 chia hết cho k => 7.(18n+3) chia hết cho k
21n + 7 chia hết cho k => 6. (21n + 7) chia hết cho k
=> 6.(21n + 7) - 7.(18n + 3) chia hết cho k
=> 21 chia hết cho k
=> k = 3 hoặc 7
+) Nếu k = 3 => 21n + 7 chia hết cho 3 , điều này không xảy ra vì 21n luôn chia hết cho 3 ; 7 chia cho 3 dư 1 => 21n + 7 chia cho 3 dư 1 => k = 3 không xảy ra
+) Nếu k = 7: Vì 21n + 7 luôn chia hết cho 7 với mọi n; ta cần tìm n để 18n + 3 chia hết cho 7
=> 21n - 3n + 3 chia hết cho 7 => 3- 3n chia hết cho 7 => 3 - 3n = 7t (t thuộc N)
=> 1 - n = \(\frac{7t}{3}\) => n = 1 - \(\frac{7t}{3}\)vì n; t thuộc N => t = 0 => n = 1
Vậy có duy nhất giá trị n = 1 thoả mãn yêu cầu.
Lời giải:
Gọi $d=ƯCLN(18n+3, 21n+7)$
$\Rightarrow 18n+3=3(6n+1)$ và $21n+7=7(3n+1)$ cùng chia hết cho $d$
Để phân số rút gọn được, tức là $3(6n+1)$ và $7(3n+1)$ phải cùng chia hết cho 1 số $d>1$
Mà $(3,7)=1$ nên $6n+1\vdots d$ và $3n+1\vdots d$
$\Rightarrow 2(3n+1)-(6n+1)\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $(18n+3, 21n+7)=1$, tức là không tồn tại $n$ tự nhiên để phân số có thể rút gọn.
Gọi k là ước chung nguyên tố của 18n + 3 và 21n +7
=> 18n + 3 chia hết cho k => 7.(18n+3) chia hết cho k
21n + 7 chia hết cho k => 6. (21n + 7) chia hết cho k
=> 6.(21n + 7) - 7.(18n + 3) chia hết cho k
=> 21 chia hết cho k
=> k = 3 hoặc 7
+) Nếu k = 3 => 21n + 7 chia hết cho 3 , điều này không xảy ra vì 21n luôn chia hết cho 3 ; 7 chia cho 3 dư 1 => 21n + 7 chia cho 3 dư 1 => k = 3 không xảy ra
+) Nếu k = 7: Vì 21n + 7 luôn chia hết cho 7 với mọi n; ta cần tìm n để 18n + 3 chia hết cho 7
=> 21n - 3n + 3 chia hết cho 7 => 3- 3n chia hết cho 7 => 3 - 3n = 7t (t thuộc N)
=> 1 - n = 7 T / 3 => n = 1 - 7T /3
thỏa mãn rồi nha !!!
giả sử 18n+3 và 21n+7 cùng rút gọn được cho số nguyên tố p
suy ra 6(21n+7) - 7(18n+3) chia hết cho p hay 21 chia hết cho p
vậy p thuộc {3;7}. nhưng 21n +7 không chia hết cho 3 nên suy ra 18n+3 chia hết cho 7
do đó 18n +3 -21 chia hết cho 7 hay 18(n-1) chia hết cho 7.từ đó n-1 chia hết cho 7
vậy n=7k +1 (k thuộc N) thì phân số 18n+3/21n+7 có thể rút gọn được.
k nha
Tất cả n chỉ có dạng n = 7k + 1 thì phân số rút gọn được.
Nếu bạn thực sự muốn giải, nhắn lại cho mình.