Cho DABC cân tại A. Trên cạnh AB lấy điểm D, trên cạnh AC lấy điểm E sao cho AD=AE.
a) Chứng minh DABE = DACD.
b) Gọi K là giao điểm của BE và CD. Tam giác KBC là tam giác gì? Vì sao?
c) Chứng minh DE//BC
d) Gọi M là trung điểm của BC. Chứng minh A, K, M thẳng hàng
giúp mk vs ạ mk đang cần gấp
a.Xét tam giác ABE và tam giác ACD, có:
\(\widehat{A}:chung\)
AD = AE ( gt )
AB = AC ( ABC cân )
Vậy tam giác ABE = tam giác ACD ( c.g.c )
b.Xét tam giác DBC và tam giác ECB, có:
BD = CE ( AB=AC; AD=AE )
góc B = góc C ( ABC cân )
BC: cạnh chung
Vậy tam giác DBC = tam giác ECB ( c.g.c )
=> góc DCB = góc EBC ( 2 góc tương ứng )
=> Tam giác KBC là tam giác cân và cân tại K
c.Xét tam giác AKB và tam giác AKC có:
AB=AC ( ABC cân )
góc ABK = góc ACK ( góc B = góc C; góc KBC = góc KCB )
AK: cạnh chung
Vậy tam giác AKB = tam giác AKC ( c.g.c )
=> góc BAK = góc CAK ( 2 góc tương ứng )
Mà Tam giác ADE cân tại A ( AD=AE )
=> AK là đường cao
=> AK vuông DE (1)
Mà Tam giác KBC cân tại K
=> AK vuông với BC (2)
Từ (1) và (2) => DE//BC
d. Ta có: AK là đường cao ( cmt ) cũng là đường trung tuyến
Mà M là trung điểm BC
=> A,K,M thẳng hàng