K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 6 2016

\(=\frac{a}{2}\)

25 tháng 6 2016

bác chỉ em cách giải dc ko bác :V

24 tháng 6 2017

1) \(\frac{1}{a-b}\cdot\sqrt{a^4\cdot\left(a-b\right)^2}=\frac{1}{a-b}\cdot a^2\cdot\left|a-b\right|=a^2\)(Vì a > b => a - b > 0 và a^2 luôn dương với mọi a)

2) \(\sqrt{\frac{2a}{3}}\cdot\sqrt{\frac{3a}{8}}=\sqrt{\frac{6a^2}{24}}=\sqrt{\frac{a^2}{4}}=\frac{a}{2}\)(vì \(a\ge0\))

3) \(\sqrt{13}a\cdot\sqrt{\frac{52}{a}}=\frac{a\cdot\sqrt{13}\cdot\sqrt{4\cdot13}}{\sqrt{a}}=\frac{2a\cdot\sqrt{13\cdot13}}{\sqrt{a}}=26\sqrt{a}\)(vì a > 0)

23 tháng 7 2020

\(B=\frac{2}{x^2-y^2}\cdot\sqrt{\frac{9\left(x^2+2xy+y^2\right)}{4}}=\frac{2}{\left(x-y\right)\left(x+y\right)}\cdot\sqrt{\frac{9\left(x+y\right)^2}{4}}\)
\(=\frac{2}{\left(x-y\right)\left(x+y\right)}\cdot\frac{\sqrt{9\left(x+y\right)^2}}{\sqrt{4}}=\frac{2}{\left(x-y\right)\left(x+y\right)}\cdot\frac{3\left(x+y\right)}{2}\)(vì x > -y <=> x + y >  0)

\(=\frac{3}{x-y}\)

\(C=\sqrt{\frac{2a}{3}}.\sqrt{\frac{3a}{8}}=\sqrt{\frac{2a}{3}\cdot\frac{3a}{8}}=\sqrt{\frac{6a^2}{24}}=\sqrt{\frac{a^2}{4}}=\frac{a}{2}\)(vì a > = 0)

\(D=\frac{1}{a-b}\cdot\sqrt{a^4\left(a-b\right)^2}=\frac{1}{a-b}\cdot a^2\left(a-b\right)=a^2\)(a > b > 0)

23 tháng 7 2020

câu cuối điều kiện là a>b

\(\frac{1}{a-b}\sqrt{a^4\left(a-b\right)^2}=\frac{a^2\left|a-b\right|}{a-b}=\frac{a^2\left(a-b\right)}{a-b}=a^2\) (vì a>b)

29 tháng 6 2019

\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)^3+2\sqrt{a^3}+\sqrt{b^3}}{3\sqrt{a}\left(\sqrt{a^3}+\sqrt{b^3}\right)}+\frac{\sqrt{a}\left(\sqrt{b}-\sqrt{a}\right)}{\sqrt{a}\left(a-b\right)}\)

\(=\frac{\sqrt{a^3}-3a\sqrt{b}+3\sqrt{a}.b-\sqrt{b^3}+2\sqrt{a^3}+\sqrt{b^3}}{3\sqrt{a}\left(\sqrt{a^3}+\sqrt{b^3}\right)}+\frac{\sqrt{a}\left(\sqrt{b}-\sqrt{a}\right)}{\sqrt{a}\left(a-b\right)}\)

\(=\frac{3\sqrt{a^3}-3a\sqrt{b}+3b\sqrt{a}}{3\sqrt{a}\left(\sqrt{a^3}+\sqrt{b^3}\right)}+\frac{\sqrt{a}\left(\sqrt{b}-\sqrt{a}\right)}{\sqrt{a}\left(a-b\right)}\)

\(=\frac{a-\sqrt{ab}+b}{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}-\frac{1}{\sqrt{a}+\sqrt{b}}=0\)

15 tháng 12 2019

\(2\sqrt{3a}-\sqrt{75a}+a\sqrt{\frac{6}{5}.\frac{5}{2a}}-\frac{2}{5}\sqrt{300a^3}\)

\(=2\sqrt{3a}-5\sqrt{3a}+a\sqrt{\frac{3}{2}}-\frac{2}{5}.10.a\sqrt{3a}\)

\(=-3\sqrt{3a}+\sqrt{\frac{3}{a}.a^2-4\sqrt{3a}}\)

\(=-3\sqrt{3a}+\sqrt{3a}-4a\sqrt{3a}\)

\(=-2\sqrt{3a}-4a\sqrt{3a}\)

\(=-2\sqrt{3a}\left(1+2a\right)\)

27 tháng 7 2019

\( Q = \dfrac{{{{\left( {\dfrac{{a - b}}{{\sqrt a + \sqrt b }}} \right)}^3} + 2a\sqrt a + b\sqrt b }}{{3{a^2} + 3b\sqrt {ab} }} + \dfrac{{\sqrt {ab} - a}}{{a\sqrt a - b\sqrt a }}\\ Q = \dfrac{{{{\left[ {\dfrac{{\left( {\sqrt a - \sqrt b } \right)\left( {\sqrt a + \sqrt b } \right)}}{{\sqrt a + \sqrt b }}} \right]}^3} + 2a\sqrt a + b\sqrt b }}{{3\left( {{a^2} + b\sqrt {ab} } \right)}} + \dfrac{{\sqrt a \left( {\sqrt b - \sqrt a } \right)}}{{\sqrt a \left( {a - b} \right)}}\\ Q = \dfrac{{{{\left( {\sqrt a - \sqrt b } \right)}^3} + 2a\sqrt a + b\sqrt b }}{{3\sqrt a \left( {a\sqrt a + b\sqrt b } \right)}} + \dfrac{{ - \left( {\sqrt a - \sqrt b } \right)}}{{\left( {\sqrt a - \sqrt b } \right)\left( {\sqrt a + \sqrt b } \right)}}\\ Q = \dfrac{1}{{\sqrt a + \sqrt b }} + \dfrac{{ - 1}}{{\sqrt a + \sqrt b }} = 0 \)

Vậy Q không phụ thuộc vào a,b

28 tháng 6 2019

\(S=\frac{\left[\frac{\left(a-b\right)\left(\sqrt{a}-\sqrt{b}\right)}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}\right]^3+2a\sqrt{a}+b\sqrt{b}}{3a^2+3b\sqrt{ab}}+\frac{\sqrt{a}\left(\sqrt{b}-\sqrt{a}\right)}{\sqrt{a}\left(a-b\right)}\)

\(S=\frac{\left(\sqrt{a}-\sqrt{b}\right)^3+2\left(\sqrt{a}\right)^2\sqrt{a}+\left(\sqrt{b}\right)^2\sqrt{b}}{3a^2+3b\sqrt{ab}}+\frac{\sqrt{b}-\sqrt{a}}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)

\(S=\frac{\left(\sqrt{a}\right)^3-3\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)-\left(\sqrt{b}\right)^3+2\left(\sqrt{a}\right)^3+\left(\sqrt{b}\right)^3}{3a^2+3b\sqrt{ab}}-\frac{1}{\sqrt{a}+\sqrt{b}}\)

\(S=\frac{3\left(\sqrt{a}\right)^3-3a\sqrt{b}+3\sqrt{a}b}{3a^2+3b\sqrt{ab}}-\frac{1}{\sqrt{a}+\sqrt{b}}\)

\(S=\frac{\sqrt{a}\left(a-\sqrt{ab}+b\right)}{\sqrt{a}\left[\left(\sqrt{a}\right)^3+\left(\sqrt{b}\right)^3\right]}-\frac{1}{\sqrt{a}+\sqrt{b}}\)

\(S=\frac{a-\sqrt{ab}+b}{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}-\frac{1}{\sqrt{a}+\sqrt{b}}\)

\(S=\frac{1}{\sqrt{a}+\sqrt{b}}-\frac{1}{\sqrt{a}+\sqrt{b}}=0\)

9 tháng 6 2019

a/   \(\sqrt{\frac{2a}{3}}\cdot\sqrt{\frac{3a}{8}}\)

\(=\sqrt{\frac{2a}{3}\cdot\frac{3a}{8}}=\sqrt{\frac{6a^2}{24}}=\sqrt{\frac{a^2}{4}}=\sqrt{\frac{a^2}{2^2}}=\sqrt{\left(\frac{a}{2}\right)^2}=\left|\frac{a}{2}\right|\)

mak ta có \(a\ge0\)

\(\Rightarrow\left|\frac{a}{2}\right|=\frac{a}{2}\)\(\Rightarrow\sqrt{\frac{2a}{3}}\cdot\sqrt{\frac{3a}{8}}=\frac{a}{2}\)

b/ \(\sqrt{13a}\cdot\sqrt{\frac{52}{a}}\)

\(=\sqrt{13a\cdot\frac{52}{a}}=\sqrt{\frac{13a\cdot52}{a}}=\sqrt{13\cdot52}=\sqrt{13\cdot13\cdot4}=\sqrt{13^2\cdot2^2}=\sqrt{\left(13\cdot2\right)^2}=13\cdot2=26\)

c/ \(\sqrt{5a}\cdot\sqrt{45}-3a\)

\(=\sqrt{5a\cdot45a}-3a=\sqrt{5a\cdot5a\cdot9}-3a\)

                                        \(=\sqrt{5^2\cdot a^2\cdot3^2}-3a=\left|5\cdot a\cdot3\right|-3a\)

                                                                                      \(=15\left|a\right|-3a\)

 Có \(a\ge0\Rightarrow\left|a\right|=a\)

\(\Rightarrow15\left|a\right|-3a=15a-3a=12a\)

\(\Rightarrow\sqrt{5a}\cdot\sqrt{45}-3a=12a\)

  d/ \(\left(3-a\right)^2-\sqrt{0,2}\cdot\sqrt{180a^2}\)

\(=\left(3-a\right)^2-\sqrt{0,2\cdot180a^2}\)

\(=\left(3-a\right)^2-\sqrt{0,2\cdot9\cdot2\cdot10\cdot a^2}\)

\(=\left(3-a\right)^2-\sqrt{4\cdot9\cdot a^2}\)

\(=\left(3-a\right)^2-\sqrt{2^2\cdot3^2\cdot a^2}\)

\(=\left(3-a\right)^2-\left|2\cdot3\cdot a\right|\)

\(=\left(3-a\right)^2-6\left|a\right|=9-6a+a^2-6\left|a\right|\)

Chia làm 2 Trường Hợp:

 + TH1 : \(9-6a+a^2-6a=9-12a+a^2\left(a\ge0\right)\)

+  TH2 : \(9-6a+a^2-\left(-6a\right)=9+a^2\left(a< 0\right)\)