1/3.4+1/4.5+1/5.6+...+1/20/21
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}\)
\(A=\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{7}-\dfrac{1}{8}\)
\(A=\dfrac{1}{3}-\dfrac{1}{8}\)
\(A=\dfrac{8}{24}-\dfrac{3}{24}\)
\(A=\dfrac{5}{24}\)
A=1/3.4+1/4.5+1/5.6+1/6.7+1/7.8
=\(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{6}-\dfrac{1}{6}+\dfrac{1}{7}-\dfrac{1}{8}\)
=\(\dfrac{1}{3}-\dfrac{1}{8}\)=\(\dfrac{8-3}{24}\)=\(\dfrac{5}{24}\)
1/3-1/4+1/4-1/5+1/5-1/6+......+1/95-1/96
1/3-1/96
32-1/96
31/96
Dễ thôi bạn!
1/3.4+1/4.5+1/5.6+...+1/99.100
=1/3-1/4+1/4-1/5+1/5-1/6+...+1/98-1/99+1/99-1/100
=1/3-1/100
=97/300
\(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}\)
\(=\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{1}{3}-\frac{1}{100}\)
\(=\frac{97}{300}\)
\(\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+...+\dfrac{1}{n.\left(n+1\right)}=\dfrac{3}{10}\)
Ta có: \(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{n}-\dfrac{1}{n+1}=\dfrac{3}{10}\)
\(\dfrac{1}{3}-\dfrac{1}{x+1}=\dfrac{3}{10}\)
\(\dfrac{1}{x+1}=\dfrac{1}{3}-\dfrac{3}{10}\)
\(\dfrac{1}{x+1}=\dfrac{1}{30}\)
\(\Rightarrow x+1=30\)
\(x=30-1\)
\(x=29\)
Vậy ...
\(=\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{20}-\dfrac{1}{21}=\dfrac{1}{3}-\dfrac{1}{21}=\dfrac{6}{21}=\dfrac{2}{7}\)
\(\dfrac{2}{7}\)