hai đường cao ad và be của tam giác abc cắt nhau tại h. chứng minh rằng: a) tam giác adc và tam giác bec là hai tam giác đồng dạng b) ha.hd=hb.he
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác BDHF có
góc BDH+góc BFH=180 độ
=>BDHF là tứ giác nội tiếp
b: Xét tứ giác BFEC có
góc BFC=góc BEC=90 độ
=>BFEC là tứ giác nội tiếp
c: Xét ΔHAF vuông tại F và ΔHCD vuông tại D có
góc AHF=góc CHD
=>ΔHAF đồng đạng với ΔHCD
=>HA/HC=HF/HD
=>HA*HD=HF*HC
Xét ΔHFB vuông tại F và ΔHEC vuông tại E có
góc FHB=góc EHC
=>ΔHFB đồng dạng vơi ΔHEC
=>HF/HE=HB/HC
=>HF*HC=HB*HE=HA*HD
d: Xét ΔAEF và ΔABC có
góc AEF=góc ABC
góc FAE chung
=>ΔAEF đồng dạng với ΔABC
Em tự vẽ hình nhé!
a. Đề sai vì tam giác BDH là tam giác vuông còn BDF là tam giác thường.
b. Xét tam giác BHF và tam giác CHE có:
\(\widehat{BFH}=\widehat{CEH}=90^o\left(gt\right)\)
\(\widehat{FHB}=\widehat{EHC}\) (đối đỉnh)
Do đó tam giác BHF đồng dạng tam giác CHE (g.g)
c. Xét tam giác AHE và tam giác BHD có:
\(\widehat{E}=\widehat{D}=90^o\)
\(\widehat{AHE}=\widehat{BHD}\) (đối đỉnh)
Do đó tam giác AHE đồng dạng tam giác BHD (g.g)
\(\Rightarrow\dfrac{HA}{HB}=\dfrac{HE}{HD}\Leftrightarrow HA.HD=HE.HB\) (1)
Tương tự có tam giác AFH đồng dạng tam giác CDH (g.g)
\(\Rightarrow\dfrac{HA}{HC}=\dfrac{HF}{HD}\Leftrightarrow HA.HD=HC.HF\left(2\right)\)
Từ (1), (2) có: \(HA.HD=HB.HE=HC.HF\)
a: Xét ΔCDA vuông tại D và ΔCEB vuông tại E có
góc C chung
Do đó: ΔCDA\(\sim\)ΔCEB
b: Xét ΔHEA vuông tại E và ΔHDB vuông tại D có
\(\widehat{AHE}=\widehat{BHD}\)
Do đó: ΔHEA\(\sim\)ΔHDB
Suy ra: HE/HD=HA/HB
hay \(HE\cdot HB=HD\cdot HA\)
a, Xét tam giác ADC và tam giác BEC ta có
^C _ chung
^ADC = ^BEC = 900
Vậy tam giác ADC ~ tam giác BEC (g.g)
b, => ^DAC = ^EBC ( 2 góc tương ứng )
Xét tam giác HAE và tam giác HBD ta có
^AHE = ^BHD ( đối đỉnh )
^HAE = ^HBD (cmt)
Vậy tam giác HAE ~ tam giác HBD (g.g)
\(\dfrac{AH}{HB}=\dfrac{HE}{DH}\Rightarrow AH.DH=HE.HB\)