A=1/2.3/4.5/6…1999/2000
CMR: A2<1/2001
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(S=\frac{2}{2.3}+\frac{2}{3.4}+\frac{2.}{4.5}+...+\frac{2}{x\left(x+1\right)}=\frac{1999}{2001}\)
\(\Rightarrow\frac{S}{2}=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}=\frac{1999}{4002}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{1999}{4002}\)
\(=\frac{1}{2}-\frac{1}{x+1}=\frac{1999}{4002}\)
\(\frac{1}{x+1}=\frac{1}{2001}\)
\(\Rightarrow\)x+1=2001
x=2000
Vậy x=2000.
đặt \(B=\frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{98}{99}.\frac{100}{100}\Leftrightarrow A