\(\frac{9}{22}x55\)
\(\frac{11}{17:\frac{33}{34}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\left(\frac{2}{193}-\frac{3}{386}\right).\frac{193}{17}+\frac{33}{34}\right):\left(\left(\frac{7}{1931}+\frac{11}{3862}\right)\cdot\frac{1931}{25}+\frac{9}{2}\right)\)
= \(\left(\left(\frac{4}{386}-\frac{3}{386}\right)\cdot\frac{193}{17}+\frac{33}{34}\right):\left(\left(\frac{14}{3862}+\frac{11}{3862}\right)\cdot\frac{1931}{25}+\frac{9}{2}\right)\)
= \(\left(\frac{1}{186}\cdot\frac{193}{17}+\frac{33}{34}\right):\left(\frac{25}{3862}\cdot\frac{1931}{25}+\frac{9}{2}\right)\)
= \(\left(\frac{1}{34}+\frac{33}{34}\right):\left(\frac{1}{2}+\frac{9}{2}\right)\)
= \(1:5\)
= \(\frac{1}{5}=0,2\)
\(M=\left[\left(\frac{2}{193}-\frac{3}{386}\right).\frac{193}{17}+\frac{33}{34}\right]:\left[\left(\frac{7}{2001}+\frac{11}{4002}\right).\frac{2001}{25}+\frac{9}{2}\right] \)
\(=\left(\frac{2}{17}-\frac{3}{34}+\frac{33}{34}\right):\left(\frac{7}{25}+\frac{11}{50}+\frac{9}{2}\right)\)
\(=\frac{4-3+33}{34}:\frac{14+11+225}{50}=1:5=0.2\)
\(=\left(\frac{1}{386}-\frac{193}{17}+\frac{33}{34}\right):\left(\frac{25}{3862}\cdot\frac{1931}{25}+\frac{9}{2}\right)\)
\(=\left[\frac{1}{386}-\left(\frac{193}{17}-\frac{33}{34}\right)\right]:\left(\frac{1}{2}+\frac{9}{2}\right)\)
\(=\left(\frac{1}{386}-\frac{386}{34}\right)\div5\)
\(=\frac{1}{386}\cdot\frac{1}{5}-\frac{386}{34}\cdot\frac{1}{5}=\frac{1}{1930}-\frac{386}{170}=\)là 1 phân số âm.
bài 1:
\(\frac{7}{4}\left(\frac{33}{42}+\frac{3333}{2020}+\frac{333333}{303030}+\frac{33333333}{42424242}\right)\)
\(=\frac{7}{4}\left(\frac{33}{12}+\frac{33}{20}+\frac{33}{30}+\frac{33}{42}\right)\)
\(=\frac{7}{4}.33\left(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\right)\)
\(=\frac{231}{4}\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)\)
\(=\frac{231}{4}\left(\frac{1}{3}-\frac{1}{7}\right)\)
\(=\frac{231}{4}\cdot\frac{4}{21}=11\)
\(\left[\left(\frac{2}{193}-\frac{3}{386}\right).\frac{193}{17}+\frac{33}{34}\right]:\left[\left(\frac{7}{1931}+\frac{11}{3862}\right).\frac{1931}{25}+\frac{9}{2}\right]\)
= \(\left[\frac{193}{17}.\frac{2}{193}-\frac{193}{17}.\frac{3}{386}+\frac{33}{34}\right]:\left[\frac{1931}{25}.\frac{7}{1931}+\frac{1931}{25}.\frac{11}{3862}+\frac{9}{2}\right]\)
= \(\left[\frac{2}{17}-\frac{3}{17}+\frac{33}{34}\right]:\left[\frac{7}{25}+\frac{11}{50}+\frac{9}{2}\right]\)
= \(\left[\frac{4}{34}-\frac{6}{34}+\frac{33}{34}\right]:\left[\frac{14}{50}+\frac{11}{50}+\frac{225}{50}\right]\)
= \(\frac{31}{34}:2\)
= \(\frac{31}{68}\)
\(\left[\left(\frac{2}{193}-\frac{3}{386}\right).\frac{193}{17}+\frac{33}{34}\right]:\left[\left(\frac{7}{1931}+\frac{11}{3862}\right).\frac{1931}{25}+\frac{9}{2}\right]\)
\(=\left[\left(\frac{4}{386}-\frac{3}{386}\right).\frac{193}{17}+\frac{33}{34}\right]:\left[\left(\frac{14}{3862}+\frac{11}{3862}\right).\frac{1931}{25}+\frac{9}{2}\right]\)
\(=\left(\frac{1}{386}.\frac{193}{17}+\frac{33}{34}\right):\left(\frac{25}{3862}.\frac{1931}{25}+\frac{9}{2}\right)\)
\(=\left(\frac{1}{34}+\frac{33}{34}\right):\left(\frac{1}{2}+\frac{9}{2}\right)\)
\(=1:5\)
\(=\frac{1}{5}\)
\(A=\left[\left(\frac{2}{193}-\frac{3}{386}\right).\frac{193}{17}+\frac{33}{34}\right]\div\left[\left(\frac{7}{1931}+\frac{11}{3862}\right).\frac{1931}{25}+\frac{9}{2}\right]\)
\(=\left[\left(\frac{4}{386}-\frac{3}{386}\right).\frac{193}{17}+\frac{33}{34}\right]\div\left[\left(\frac{14}{3862}+\frac{11}{3862}\right).\frac{1931}{25}+\frac{9}{2}\right]\)
\(=\left[\frac{1}{386}.\frac{193}{17}+\frac{33}{34}\right]\div\left[\frac{25}{3862}.\frac{1931}{25}+\frac{9}{2}\right]\)
\(=\left[\frac{1}{34}+\frac{33}{34}\right]\div\left[\frac{1}{2}+\frac{9}{2}\right]\)
\(=1\div5=0,2\)
Vậy A = 0,2
\(\frac{9}{22}\cdot55=\frac{9\cdot55}{22}=\frac{495}{22}=\frac{45}{2}\)
\(\frac{11}{17:\frac{33}{34}}=\frac{11}{17\cdot\frac{34}{33}}=\frac{11}{\frac{578}{33}}=\frac{363}{578}\)