K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2023

Em đăng đúng vào môn Toán nha

23 tháng 4 2018

A B C D E H I O M N K d F G x y Q S

Gọi Q là điểm đối xứng với A qua M, S là điểm đối xứng với E qua M 

Lấy giao điểm của DB và EC kéo dài là F, gọi G là trung điểm của OF. Nối F với I.

Dễ dàng chứng minh được: \(\Delta\)AMC=\(\Delta\)BMQ (c.g.c) => ^MAC=^MQB

Suy ra AC // BQ (2 góc so le trong bằng nhau) => ^BAC+^ABQ=1800 (1)

Ta có: ^BAC+^EAD= 2.^BAC + ^CAE + ^DAB = (^BAC+^CAE) + (^BAC+^DAB) = ^BAE+^CAD=1800 (2)

Từ (1) và (2) => ^BAC+^ABQ=^BAC+^EAD => ^ABQ=^EAD

=> \(\Delta\)ABQ=\(\Delta\)EAD (c.g.c) = >^BAQ=^AED (2 góc tương ứng) hay ^BAM=^AEN

Xét \(\Delta\)ABM và \(\Delta\)EAN: ^BAM=^AEN; ^ABM=^EAN (Cùng phụ với ^BAH); AB=AE

=> \(\Delta\)ABM=\(\Delta\)EAN (g.c.g) => AM=EN (2 cạnh tương ứng)

Tương tự ta chứng minh AM=DN => DN=EN => N là trung điểm của DE

\(\Delta\)AEC=\(\Delta\)ABD (c.g.c) => EC=BD

\(\Delta\)EMC=\(\Delta\)SMB (c.g.c) => EC=SB 

=> BD=SB => Tam giác DBS cân tại B. Do ^SBF là góc ngoài của \(\Delta\)SDB

=> ^SBF=2. ^BDS .

\(\Delta\)EMC=\(\Delta\)SMB => ^MEC=^MSB => EC//SB hay EF//SB => ^SBF=^EFD (So le trong)

=> ^EFD = 2.^BDS (3)

Dễ thấy Bx và Cy là phân giác 2 góc ngoài của tam giác FBC. Chúng cắt nhau tại I

Nên FI là phân giác của ^CFB hay ^EFD => ^DFI=1/2 ^EFD (4)

Từ (3) và (4) => ^BDS=^DFI => DS//FI (2 góc so le trong)

Mà MN là đường trung bình của tam giác EDS => MN//FI (*)

Xét \(\Delta\)OIF:

K là trung điểm OI, G là trung điểm OF => KG là đường trung bình \(\Delta\)OIF => KG//FI (**)

Xét tứ giác BOCF: M; G lần lượt là trung điểm của 2 đường chéo BC và OF

FB giao CO tại D; FC giao BO tại E; N là trung điểm của DE

Tứ đó ta có: 3 điểm G;M;N cùng nằm trên đường thẳng Gauss của tứ giác BOCF

=> G,M,N thẳng hàng (***)

Từ (*); (**) và (***) => 3 điểm M;N;K thẳng hàng (Theo tiên đề Ơ-clit) (đpcm).

ΔAMC=ΔBMQ (c.g.c) => ^MAC=^MQB

Suy ra AC // BQ (2 góc so le trong bằng nhau) => ^BAC+^ABQ=1800 (1)

Ta có: ^BAC+^EAD= 2.^BAC + ^CAE + ^DAB = (^BAC+^CAE) + (^BAC+^DAB) = ^BAE+^CAD=1800 (2)

Từ (1) và (2) => ^BAC+^ABQ=^BAC+^EAD => ^ABQ=^EAD

=> ΔABQ=ΔEAD (c.g.c) = >^BAQ=^AED (2 góc tương ứng) hay ^BAM=^AEN

Xét ΔABM và ΔEAN: ^BAM=^AEN; ^ABM=^EAN (Cùng phụ với ^BAH); AB=AE

=> ΔABM=ΔEAN (g.c.g) => AM=EN (2 cạnh tương ứng)

Tương tự ta chứng minh AM=DN => DN=EN => N là trung điểm của DE

ΔAEC=ΔABD (c.g.c) => EC=BD

ΔEMC=ΔSMB (c.g.c) => EC=SB 

=> BD=SB => Tam giác DBS cân tại B. Do ^SBF là góc ngoài của ΔSDB

=> ^SBF=2. ^BDS .

ΔEMC=ΔSMB => ^MEC=^MSB => EC//SB hay EF//SB => ^SBF=^EFD (So le trong)

=> ^EFD = 2.^BDS (3)

Dễ thấy Bx và Cy là phân giác 2 góc ngoài của tam giác FBC. Chúng cắt nhau tại I

Nên FI là phân giác của ^CFB hay ^EFD => ^DFI=1/2 ^EFD (4)

Từ (3) và (4) => ^BDS=^DFI => DS//FI (2 góc so le trong)

Mà MN là đường trung bình của tam giác EDS => MN//FI (*)

Xét ΔOIF:

K là trung điểm OI, G là trung điểm OF => KG là đường trung bình ΔOIF => KG//FI (**)

Xét tứ giác BOCF: M; G lần lượt là trung điểm của 2 đường chéo BC và OF

FB giao CO tại D; FC giao BO tại E; N là trung điểm của DE

Tứ đó ta có: 3 điểm G;M;N cùng nằm trên đường thẳng Gauss của tứ giác BOCF

=> G,M,N thẳng hàng (***)

Từ (*); (**) và (***) => 3 điểm M;N;K thẳng hàng (Theo tiên đề Ơ-clit) (đpcm).

NV
27 tháng 3 2021

a.

Xét hai tam giác vuông ABE và ADH:

\(AD=AB\)

\(\widehat{BAE}=\widehat{DAH}\) (cùng phụ \(\widehat{DAE}\))

\(\Rightarrow\Delta_vABE=\Delta_vADH\) (góc nhọn-cạnh góc vuông) (1)

\(\Rightarrow AH=AE\)

\(\Rightarrow\Delta AHE\) vuông cân tại A

b. Cũng từ (1) ta có \(BE=DH\)

Xét hai tam giác vuông ABE và FDA có:

\(\widehat{BAE}=\widehat{AFD}\) (so le trong)

\(\Rightarrow\Delta_vABE\sim\Delta_vFDA\)

\(\Rightarrow\dfrac{AB}{DF}=\dfrac{BE}{AD}\Rightarrow AB.AD=BE.DF\Rightarrow AB^2=HD.DF\) (do AD=AB và BE=HD)

c. Ta có: \(\left\{{}\begin{matrix}S_{HAF}=\dfrac{1}{2}AH.AF\\S_{HAF}=\dfrac{1}{2}AD.HF\end{matrix}\right.\) \(\Rightarrow AH.AF=AD.HF\)

\(\Rightarrow\dfrac{1}{AD}=\dfrac{HF}{AH.AF}\Rightarrow\dfrac{1}{AD^2}=\dfrac{HF^2}{AH^2.AF^2}=\dfrac{AH^2+AF^2}{AH^2.AF^2}\)

\(\Leftrightarrow\dfrac{1}{AD^2}=\dfrac{1}{AF^2}+\dfrac{1}{AH^2}=\dfrac{1}{AE^2}+\dfrac{1}{AF^2}\) (do AH=AE theo chứng minh câu a)

\(\Leftrightarrow\dfrac{1}{AE^2}+\dfrac{1}{AF^2}=\dfrac{1}{a^2}\) cố định (đpcm)

NV
27 tháng 3 2021

undefined