Tìm x biết: a)3/5-2/7<2/3.x+3/4<1/2+7/9
b)1/6+1/9<2/3-3/4.x<2/3+1.25
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) \(\dfrac{9}{20}-\dfrac{8}{15}\times\dfrac{5}{12}\)
\(=\dfrac{9}{20}-\dfrac{2}{9}\)
\(=\dfrac{41}{180}\)
b) \(\dfrac{2}{3}\div\dfrac{4}{5}\div\dfrac{7}{12}\)
\(=\dfrac{2}{3}\times\dfrac{5}{4}\times\dfrac{12}{7}\)
\(=\dfrac{5}{6}\times\dfrac{12}{7}\)
\(=\dfrac{10}{7}\)
c) \(\dfrac{7}{9}\times\dfrac{1}{3}+\dfrac{7}{9}\times\dfrac{2}{3}\)
\(=\dfrac{7}{9}\times\left(\dfrac{1}{3}+\dfrac{2}{3}\right)\)
\(=\dfrac{7}{9}\times1\)
\(=\dfrac{7}{9}\)
Bài 2:
a) \(2\times\left(x-1\right)=4026\)
\(\left(x-1\right)=4026\div2\)
\(x-1=2013\)
\(x=2014\)
Vậy: \(x=2014\)
b) \(x\times3,7+6,3\times x=320\)
\(x\times\left(3,7+6,3\right)=320\)
\(x\times10=320\)
\(x=320\div10\)
\(x=32\)
Vậy: \(x=32\)
c) \(0,25\times3< 3< 1,02\)
\(\Leftrightarrow0,75< 3< 1,02\) ( S )
=> \(0,75< 1,02< 3\)
b: Thay \(x=7-2\sqrt{6}\) vào A, ta được:
\(A=\dfrac{3\cdot\left(\sqrt{6}-1\right)}{-7+2\sqrt{6}-5\left(\sqrt{6}+1\right)-1}\)
\(=\dfrac{3\cdot\left(\sqrt{6}-1\right)}{-8+2\sqrt{6}-5\sqrt{6}-5}\)
\(=\dfrac{-3\sqrt{6}+3}{13+3\sqrt{6}}=\dfrac{93-48\sqrt{6}}{115}\)
a) Ta có:
1; 4; 7;...; 100 có (100 - 1) : 3 + 1 = 34 (số)
1 + 4 + 7+ ... + 100 = (100 + 1) × 34 : 2
= 101 × 17
(1 + 4 + 7 + ... + 100) : a = 17
101 × 17 : a = 17
a = 101 × 17 : 17
a = 100
b) (X - 1/2) × 5/3 = 7/4 - 1/2
(X - 1/2) × 5/3 = 5/4
X - 1/2 = 5/4 : 5/3
X - 1/2 = 3/4
X = 3/4 + 1/2
X = 5/4
a) (1 + 4 + 7 +...+ 100) : a = 17
1717 : a = 17
a = 101
b) \(\left(x-\dfrac{1}{2}\right)\times\dfrac{5}{3}=\dfrac{7}{4}-\dfrac{1}{2}\)
\(\left(x-\dfrac{1}{2}\right)\times\dfrac{5}{3}=\dfrac{10}{8}\)
\(\left(x-\dfrac{1}{2}\right)=\dfrac{10}{8}\div\dfrac{5}{3}\)
\(\left(x-\dfrac{1}{2}\right)=\dfrac{10}{8}\times\dfrac{3}{5}\)
\(\left(x-\dfrac{1}{2}\right)=\dfrac{3}{4}\)
\(x-\dfrac{1}{2}=\dfrac{3}{4}\)
\(x=\dfrac{3}{4}+\dfrac{1}{2}\)
\(x=\dfrac{5}{4}\)
a, - \(\dfrac{2}{5}\) + \(\dfrac{4}{5}\).\(x\) = \(\dfrac{3}{5}\)
\(\dfrac{4}{5}\).\(x\) = \(\dfrac{3}{5}\)+ \(\dfrac{2}{5}\)
\(\dfrac{4}{5}\).\(x\) = 1
\(x\) = \(\dfrac{5}{4}\)
b, - \(\dfrac{3}{7}\) - \(\dfrac{4}{7}\): \(x\) = \(\dfrac{2}{5}\)
\(\dfrac{4}{7}\): \(x\) = - \(\dfrac{3}{7}\) - \(\dfrac{2}{5}\)
\(\dfrac{4}{7}\): \(x\) = - \(\dfrac{29}{35}\)
\(x\) = \(\dfrac{4}{7}\): (- \(\dfrac{29}{35}\) )
\(x\) = - \(\dfrac{20}{29}\)
c, \(\dfrac{4}{7}\).\(x\) + \(\dfrac{2}{3}\) = - \(\dfrac{1}{5}\)
\(\dfrac{4}{7}\).\(x\) = -\(\dfrac{1}{5}\) - \(\dfrac{2}{3}\)
\(\dfrac{4}{7}\).\(x\) = - \(\dfrac{13}{15}\)
\(x\) = - \(\dfrac{13}{15}\): \(\dfrac{4}{7}\)
\(x\) = - \(\dfrac{91}{60}\)
\(a,\dfrac{2}{3}.x=\dfrac{2}{7}\\ x=\dfrac{2}{7}:\dfrac{2}{3}=\dfrac{3}{7}\\ ---\\ b,x.\dfrac{3}{5}=\dfrac{2}{5}\\ x=\dfrac{2}{5}:\dfrac{3}{5}=\dfrac{2}{3}\\ ---\\ c,x:\dfrac{8}{13}=\dfrac{13}{7}\\x=\dfrac{13}{7}.\dfrac{8}{13}=\dfrac{8}{7}\\ ----\\ d,\dfrac{3}{2}:x=\dfrac{7}{4}\\ x=\dfrac{3}{2}:\dfrac{7}{4}=\dfrac{3}{2}.\dfrac{4}{7}=\dfrac{6}{7}\)
\(1,\\ \left(x-7\right)^{x+1}-\left(x-7\right)^{x+11}=0\\ \Leftrightarrow\left(x-7\right)^{x+1}\left[1-\left(x-7\right)^{10}\right]=0\\ \Leftrightarrow\left[{}\begin{matrix}\left(x-7\right)^{x+1}=0\\\left(x-7\right)^{10}=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-7=0\\x-7=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=7\\x=8\end{matrix}\right.\)
\(2,\\ a,\left|2x-3\right|>5\Leftrightarrow\left[{}\begin{matrix}2x-3< -5\\2x-3>5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x< -1\\x>4\end{matrix}\right.\\ b,\left|3x-1\right|\le7\Leftrightarrow\left[{}\begin{matrix}3x-1\le7\\1-3x\le7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\le\dfrac{8}{3}\\x\ge-2\end{matrix}\right.\\ c,\cdot x< -\dfrac{3}{2}\\ \Leftrightarrow5-3x+\left(-2x-3\right)=7\Leftrightarrow2-5x=7\Leftrightarrow x=-1\left(ktm\right)\\ \cdot-\dfrac{3}{2}\le x\le\dfrac{5}{3}\\ \Leftrightarrow\left(5-3x\right)+\left(2x+3\right)=7\Leftrightarrow8-x=7\Leftrightarrow x=1\left(tm\right)\\ \cdot x>\dfrac{5}{3}\\ \Leftrightarrow\left(3x-5\right)+\left(2x+3\right)=7\Leftrightarrow5x-2=7\Leftrightarrow x=\dfrac{9}{5}\left(tm\right)\\ \Leftrightarrow S=\left\{1;\dfrac{9}{5}\right\}\)