Chứng minh rằng: \(A=x^2-x^9-x^{1945}\)chia hết cho \(B=x^2-x+1\)
Giúp mình với!!!!!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) Đặt \(f\left(x\right)=x^{10}-10x+9\)
Giả sử \(f\left(x\right)⋮\left(x-1\right)^2\)
\(\Rightarrow f\left(x\right)=\left(x-1\right)^2Q\left(x\right)\)
\(\Leftrightarrow f\left(1\right)=\left(1-1\right)^2Q\left(1\right)\)
\(=0\)
\(\Leftrightarrow1^{10}-10.1+9=0\)
\(\Leftrightarrow0=0\)( đúng)
\(\Rightarrow\)điều giả sử đúng
\(\Rightarrow f\left(x\right)⋮\left(x-1\right)^2\left(đpcm\right)\)
1a. ( 210 + 1 )10 chia hết cho 125 = ( 1024 + 1 ) 10 chia hết cho 125 = 102510 chia hết cho 125
Ta có : 1025 : 125 = 8.2 nên 102510 không thể chia hết cho 125 vì a chia hết cho b thì a nhân x chia hết cho b
1b. 102018 + 53 chia hết cho 9 = ( 1 + 0 + 0 + 0 + ... ) + 125 = 1 + 8 = 9 nên 102018 + 53 chia hết cho 9
2. x = 1 vì A =( 1 + 3 ) + ( 1 + 7 ) + ( 1 + 11 ) = 4 + 8 + 12 = 24
Đây là đáp án mình làm thao khả năng của mk. Với lại câu 2 ko ghi rõ nên mk ko thể là chắc chắn đc