bài 3 : TÌm x biết.
3^2 - 1/2.| 3/2.x +3 | = 2^2 . (1/4 - 3/2 ) - 2012^0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: tìm x thuộc tập hợp N, biết
A) 6x +4x=2010
6 * x + 4 * x = 2010
(6 + 4) * x = 2010
10 * x = 2010
x= 2010 : 10
x= 201
B) (x-10) ×11=0
\(\Rightarrow\)x - 10 = 0
x = 0 + 10
x = 10
Bài 2: tìm x,y thuộc N, biết
A) x×y-2x=0
\(\Rightarrow x\)= 0
B) (x-4)×(x-3)=0
\(\Rightarrow\)x - 4 = 0
x = 0 + 4
x = 4
Bài 3: tính tổng
A) S=1+2+...+2000
Số các số hạng: (2000 - 1) : 1 + 1= 2000 (số)
Tổng: (2000 + 1) * 2000 : 2 = 2 001 000
B) S= 2+4+...+2010
Số các số hạng: (2010 - 2) : 2 +1= 1005 (số)
Tổng: (2010 + 2) * 1005 : 2 = 1 011 030
C) S=1+3+...+2011
Số các số hạng; (2011 - 1) : 2 +1 = 1006 (số)
Tổng: (2011 +1) * 1006 : 2 = 1 012 036
D) 5+10+15+...+2015
Số các số hạng: (2015 - 5) : 5 + 1 = 403 (số)
Tổng: (2015 + 5) * 403 :2 = 407 030
E) 3+6+...+2010
Số các số hạng: (2010 - 3) : 3 +1 = 670 (số)
Tổng: (2010 + 3) * 670 : 2 = 674 355
G)4+8+12+...+2012
Số các số hạng: (2012 - 4) : 4 + 1 = 503 (số)
Tổng: (2012 + 4) * 503 : 2 = 507 024
Kho..................wa.....................troi.....................thi......................lanh.................ret.......................ai........................tich..........................ung.....................ho........................minh.....................cho....................do....................lanh
Bài 1:
a)\(\begin{cases}\left(x-3\right)^2+\left(y+2\right)^2=0\\\begin{cases}\left(x-3\right)^2\ge0\\\left(y+2\right)^2\ge0\end{cases}\end{cases}\)
\(\Rightarrow\begin{cases}\left(x-3\right)^2=0\\\left(y+2\right)^2=0\end{cases}\)\(\Rightarrow\begin{cases}x=3\\y=-2\end{cases}\)
b) tương tự
b) (x-12+y)200+(x-4-y)200= 0
\(\begin{cases}\left(x-12+y\right)^{200}+\left(x-4-y\right)^{200}=0\\\begin{cases}\left(x-12+y\right)^{200}\ge0\\\left(x-4-y\right)^{200}\ge0\end{cases}\end{cases}\)
\(\Rightarrow\begin{cases}\left(x-12+y\right)^{200}=0\\\left(x-4-y\right)^{200}=0\end{cases}\)\(\Rightarrow\begin{cases}x-12+y=0\\x-4-y=0\end{cases}\)\(\Rightarrow\begin{cases}x+y=12\left(1\right)\\x-y=4\left(2\right)\end{cases}\)
Trừ theo vế của (1) và (2) ta được:
\(2y=8\Rightarrow y=4\)\(\Rightarrow\begin{cases}x+4=12\\x-4=4\end{cases}\)\(\Rightarrow x=8\)
Vậy x=8; y=4
a: \(x^3-4x^2-x+4=0\)
=>\(\left(x^3-4x^2\right)-\left(x-4\right)=0\)
=>\(x^2\left(x-4\right)-\left(x-4\right)=0\)
=>\(\left(x-4\right)\left(x^2-1\right)=0\)
=>\(\left[{}\begin{matrix}x-4=0\\x^2-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x^2=1\end{matrix}\right.\Leftrightarrow x\in\left\{2;1;-1\right\}\)
b: Sửa đề: \(x^3+3x^2+3x+1=0\)
=>\(x^3+3\cdot x^2\cdot1+3\cdot x\cdot1^2+1^3=0\)
=>\(\left(x+1\right)^3=0\)
=>x+1=0
=>x=-1
c: \(x^3+3x^2-4x-12=0\)
=>\(\left(x^3+3x^2\right)-\left(4x+12\right)=0\)
=>\(x^2\cdot\left(x+3\right)-4\left(x+3\right)=0\)
=>\(\left(x+3\right)\left(x^2-4\right)=0\)
=>\(\left(x+3\right)\left(x-2\right)\left(x+2\right)=0\)
=>\(\left[{}\begin{matrix}x+3=0\\x-2=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=2\\x=-2\end{matrix}\right.\)
d: \(\left(x-2\right)^2-4x+8=0\)
=>\(\left(x-2\right)^2-\left(4x-8\right)=0\)
=>\(\left(x-2\right)^2-4\left(x-2\right)=0\)
=>\(\left(x-2\right)\left(x-2-4\right)=0\)
=>(x-2)(x-6)=0
=>\(\left[{}\begin{matrix}x-2=0\\x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=6\end{matrix}\right.\)
x=-22
x=18