Cho tam giác ABC cân tại A. Gọi H là hình chiếu của B lên AC. Tính cạnh đáy BC của tam giác ABC biết AH=7 HC=2cm
Ai biết giải giải nhanh dùm mình nha
Cám ơn nhiều
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ABC cân tại A => AB = AC = AH + HC = 7 + 2 = 9
HAB vuông tại H có: \(HB^2=AB^2-AH^2=9^2-7^2=32\)
HBC vuông tại H có \(BC^2=HC^2+BH^2=2^2+32=36\)
Vậy cạnh đáy BC = \(\sqrt{36}=6\).
Ủa sao dễ nhỉ
áp dụng d/l py-ta-go trong tam giac vuongo AHC
=> BC2=AH2+HC2=72+22=53=> BC = Căn 53
Ta có: AB=AC(ΔABC cân tại A)
nên AB=AH+HC=7+2=9(cm)
Xét ΔAHB vuông tại H có
\(HB^2+HA^2=AB^2\)
\(\Leftrightarrow BH^2=9^2-7^2=81-49=32\)
hay \(HB=4\sqrt{2}\left(cm\right)\)
Xét ΔBHC vuông tại H có
\(BC^2=BH^2+CH^2\)
\(\Leftrightarrow BC^2=\left(4\sqrt{2}\right)^2+2^2=36\)
hay BC=6(cm)
-Tam giác ABC cân tại A \(\Rightarrow AB=AC=AH+HC=7+2=9\) (cm)
-Tam giác ABH vuông tại H, áp dụng pytago
Ta có: \(AH=\sqrt{AB^2-AH^2}=\sqrt{9^2-7^2}=\sqrt{32}=4\sqrt{2}\) (cm)
-Tam giác BHC vuông tại H, áp dụng Pytago ta có:
\(BC=\sqrt{BH^2+HC^2}=\sqrt{\left(4\sqrt{2}\right)^2+2^2}=6\) (cm)
Vậy cạnh đáy của tam giác ABC bằng 6 cm
hình ạn tư vẽ nha
vì ABC cân nên AB = AC = AH + HC = 9 cm
Xét tam giác ABH : có góc AHB = 90 độ ( vì H là hình chiếu của B trên AC)
Theo định lí Pi-ta-go ta có \(BH^2+AH^2=AB^2\)
\(\Leftrightarrow BH^2=AB^2-AH^2\)
\(\Leftrightarrow BH^2=9^2-7^2\)
\(\Leftrightarrow BH^2=32\Leftrightarrow BH=4\sqrt{2}\)
Xết tam giác BHC vuông tại H theo Định Lí Pi-ta-go ta có
\(BH^2+HC^2=BC^2\)\(\Leftrightarrow\left(4\sqrt{2}\right)^2+2^2=BC^2\)
\(\Leftrightarrow36=BC^2\)\(\Leftrightarrow BC=6cm\)
Nguyễn Quỳnh Nga làm đc ko mà Spam?
Giải:
Do ABCABC cân nên AB=AC=7+2=9 cm
H là hình chiếu của B lên AC nên BH vuông góc AC
Áp dụng Py - ta - go, ta có:
\(BC=\sqrt{BH^2+2^2}=6\)
vì tam giác ABC cân tại A ==> AB=AC=7+2=9
DÙNG py-ra-go tính được BH=\(4\sqrt{2}\)
Rùi lại py-ta-go TÍNH ĐƯỢC BC=6cm