K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 3 2022

\(A\left(x\right)+B\left(x\right)=8x^3-4x-6+2x^3-x^2-3x+6=10x^3-x^2-7x\)

5 tháng 3 2022

Hàng ngang:

A(x) +B(x)=5x3+3x3-4x-6+2x3-x2-3x+6

                 = 10x3-x2-7x

Hàng dọc:

A(x)=5x3+3x3-4x-6=8x3-4x-6

 

   8x3      -4x-6

+ 2x3-x2-3x+6

----------------------

   10x3-x2-7x


 

                       

10 tháng 1 2023

\(Câu\text{ }4:\\ Ta\text{ }có:\text{(x^2 – 3x + 2) + (4x^3– x^2+ x – 1)}\\ =x^2-3x+2+4x^3-x^2+x-1\\ =\text{4x}^3+\left(x^2-x^2\right)+\left(-3x+x\right)+\left(2-1\right)\\ =4x^3-2x+1\)

\(Câu\text{ }5:Đặt\text{ }tính\text{ }trừ\text{ }như\text{ }sau:\)

-x^3 -5x + 2 _ 3x + 8 x^3 -8x - 6

12 tháng 4 2017

a. Ta có:

f(x) = -2x2 - 3x3 - 5x + 5x3 - x + x2 + 4x + 3 + 4x2

= 2x3 + 3x2 - 2x + 3 (0.5 điểm)

g(x) = 2x2 - x3 + 3x + 3x3 + x2 - x - 9x + 2

= 2x3 + 3x2 - 7x + 2 (0.5 điểm)

28 tháng 4 2017

a) Tìm h(x) = f(x) - g(x)
f(x) - g(x) = (-2x2 - 3x3 - 5x + 5x3 - x + x2 + 4x + 3 + 4x2) - (2x2 - x3 + 3x + 3x3 + x2 - x - 9x + 2)
= -2x2 - 3x3 - 5x + 5x3 - x + x2 + 4x + 3 + 4x2 - 2x2 + x3 - 3x - 3x3 - x2 + x + 9x - 2
= (-2x2 + x2 + 4x2 - 2x2 - x2) + (-3x3 + 5x3 + x3 - 3x3) + (-5x - x + 4x - 3x + x + 9x) + (3 - 2)
= 5x + 1
Vậy h(x) = 5x + 1

b) Tìm nghiệm của đa thức h(x)
Cho h(x) = 0
\(\Leftrightarrow\) 5x + 1 = 0
5x = 0 + 1
5x = 1
x = \(\dfrac{1}{5}\)
Vậy x = \(\dfrac{1}{5}\) là nghiệm của đa thức h(x).

31 tháng 5 2020

Sai rồi bạn!!!Nghiệm là x=\(\frac{1}{5}\)

4 tháng 6 2018

h(x)=5x+1

nghiệm_của_đa_thức_h(x)_là_-1/5

1 tháng 5 2017

a)h(x)=f(x)-g(x)

        =(2x3 +3x2 -2x +3)-(2x3 +3x2 -7x +2)

        =2x3 + 3x2 - 2x +3 - 2x3 -3x2 + 7x -2

        =5x+1

b)h(x)=5x+1=0

=>5x=-1

    x=\(\frac{-1}{5}\)

12 tháng 8 2017

b. h(x) = (2x3 + 3x2 - 2x + 3) - (2x3 + 3x2 - 7x + 2)

= 2x3 + 3x2 - 2x + 3 - 2x3 - 3x2 + 7x - 2

= 5x + 1 (0.5 điểm)

g(x) = (2x3 + 3x2 - 2x + 3) + (2x3 + 3x2 - 7x + 2)

= 2x3 + 3x2 - 2x + 3 + 2x3 + 3x2 - 7x + 2

= 4x3 + 6x2 - 9x + 5 (0.5 điểm)

12 tháng 5 2019

undefined

13 tháng 5 2019

a, Thu gọn và sắp xếp theo lũy thừa giảm dần của biến :

* \(F_{\left(x\right)}=5x^2-1+3x+x^2-5x^3\)

\(=-5x^3+6x^2+3x-1\)

* \(G_{\left(x\right)}=2-3x^3+6x^2+5x-2x^3-x\)

\(=-5x^3+6x^2+4x+2\)

b, Ta có :

* \(M_{\left(x\right)}=F_{\left(x\right)}-G_{\left(x\right)}\)

\(\Rightarrow M_{\left(x\right)}=\left(-5x^3+6x^2+3x-1\right)-\left(-5x^3+6x^2+4x+2\right)\)

\(=-5x^3+6x^2+3x-1+5x^3-6x^2-4x-2\)

\(=-x-3\).

* \(N_{\left(x\right)}=F_{\left(x\right)}+G_{\left(x\right)}\)

\(\Rightarrow N_{\left(x\right)}=\left(-5x^3+6x^2+3x-1\right)+\left(-5x^3+6x^2+4x+2\right)\)

\(=-5x^3+6x^2+3x-1-5x^3+6x^2+4x+2\)

\(=-10x^3+12x^2+7x+1\).

c, Để tìm nghiệm của đa thức \(M_{\left(x\right)}\) ta đặt \(M_{\left(x\right)}=0\) vào \(M_{\left(x\right)}=-x-3\) thì ta được :

\(-x-3=0\)

\(\Leftrightarrow-x=3\)
\(\Leftrightarrow x=-3\)

Vậy nghiệm của đa thức \(M_{\left(x\right)}\)\(x=-3\).

13 tháng 5 2019

b)M(x)=F(x)-G(x)

F(x)-G(x)=(-5x3 -6x2 + 3x - 1) - (-5x3 + 6x2 + 4x + 2)

=-5x3 - 6x2 + 3x - 1 - 5x3 - 6x2 - 4x - 2

=(-5x3 - 5x3) + (-6x2 - 6x2) + (3x - 4x) + (-1 - 2)

=-10x3 - 12x2 - 1x - 3

Vậy M(x)=-10x3 - 12x2 - 1x - 3

N(x)=F(x)+G(x)=(-5x3 - 6x2 + 3x - 1) + (-5x3 + 6x2 + 4x + 2)

=-5x3 - 6x2 + 3x - 1 + (-5x3) + 6x2 + 4x + 2

=-5x3 + (-5x3) + (-6x2 + 6x2) + (3x + 4x) + (-1 + 2)

=-10x3 + x2 + 7x + 1

-Chúc bạn học tốt nhaaa

12 tháng 5 2023

a, P(x)=(2x^3-x^3)+x^2+(3x-2x)+2=x^3+x^2+x+2
Q(x)=(3x^3-4x^3)+(5x^2-4x^2)+(3x-4x)+1=-x^3+x^2-x+1
b, M(x)=P(x)+Q(x)=x^3+x^2+x+2+(-x^3)+x^2-x+1=2x^2+3
N(x)=P(x)-Q(x)=x^3+x^2+x+2-(-x^3+x^2-x+1)=2x^3+2x+1
c, M(x)=2x^2+3
do x^2>=0 với mọi x=2x^2>=0
nên 2x^2+3>=3 với mọi x
để M(x) có nghiệm thì phải tồn tại x để M(x)=0 ( vô lý vì M(x)>=3 với mọi x)
do đó đa thức M(x) không có nghiệm