K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(A=\dfrac{x-y}{x+y}\)

\(=\dfrac{\left(x-y\right)\left(x+y\right)}{\left(x+y\right)^2}\)

\(=\dfrac{x^2-y^2}{x^2+2xy+y^2}\)

Ta có: \(x^2+2xy+y^2>x^2+y^2\forall x>y>0\)

\(\Leftrightarrow\dfrac{x^2-y^2}{x^2+2xy+y^2}< \dfrac{x^2-y^2}{x^2+y^2}\)

hay A<B

3 tháng 12 2016

Hì bất đẳng thức tam giác : )

1 tháng 8 2015

\(B=\frac{x^2-y^2}{x^2+y^2}=\frac{\left(x+y\right)\left(x-y\right)}{\left(x+y\right)^2-2xy}\)(1)

Vì x>y>0, ta có:

\(A=\frac{x-y}{x+y}=\frac{\left(x-y\right)\left(x+y\right)}{\left(x+y\right)^2}\)(2)

Vì x>y>0 nên \(\left(x+y\right)^2-2xy<\left(x+y\right)^2\)(3)

Từ (1)(2)(3)=>A<B

16 tháng 5 2019

\(B=\frac{x^2-y^2}{\left(x^2+y^2\right)}=\frac{\left(x-y\right)\left(x+y\right)}{\left(x+y\right)^2-2xy}\)(1)

Vì x > y > 0 '

\(\Rightarrow A=\frac{\left(x-y\right)}{\left(x+y\right)}=\frac{\left(x-y\right)\left(x+y\right)}{\left(x+y\right)^2}\)(2)

Mà x > y > 0 

\(\Rightarrow\left(x+y\right)^2-2xy< \left(x+y\right)^2\)(3)

Từ (1) , (2) và (3) \(\Rightarrow\frac{\left(x-y\right)\left(x+y\right)}{\left(x+y\right)^2-2xy}>\frac{\left(x-y\right)\left(x+y\right)}{\left(x+y\right)^2}\)

Hay \(A< B\)

10 tháng 8 2015

Ta có:\(\frac{x-y}{x+y}=\frac{\left(x-y\right)\left(x+y\right)}{\left(x+y\right)\left(x+y\right)}=\frac{x^2-y^2}{x^2+2xy+y^2}\)

Do x>y>0 =>x2+xy+y2<x2+2xy+y2

=>\(\frac{x^2-y^2}{x^2+xy+y^2}>\frac{x^2-y^2}{x^2+2xy+y^2}\)

=>\(\frac{x^2-y^2}{x^2+xy+y^2}>\frac{x-y}{x+y}\)

10 tháng 8 2015

\(\frac{\left(x+y\right)^3}{x^2-y^2}\)

\(\frac{\left(x^2-xy+y^2\right)}{x-y}=\frac{\left(x+y\right)\left(x^2-xy+y^2\right)}{\left(x+y\right)\left(x-y\right)}=\frac{x^3+y^3}{x^2-y^2}\)

Vì x > y > 0  => x^3 + y^3 < ( x+  y)^3 

=> \(\frac{x^3+y^3}{x^2+y^2}<\frac{\left(x+y\right)^3}{x^2-y^2}\)

HAy \(\frac{\left(x+y\right)^3}{x^2-y^2}>\frac{x^2-xy+y^2}{x-y}\)

3 tháng 12 2016

giúp mik với mik chuẩn bị phải thi HK