Tìm hệ số của x4 trong khai triển Newton của biểu thức \(\left(x^2+\dfrac{2}{x}\right)^n\) ( x khác 0) biết rằng n là số nguyên dương thỏa mản đẳng thức
\(2C^1_n+3C^2_n+4C^3_n+...+\left(n+1\right)C^n_n=111\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`2^n C_n ^0+2^[n-1] C_n ^1+2^[n-2] +... +C_n ^n=59049`
`<=>(2+1)^n=59049`
`<=>3^n=59049`
`<=>n=10 =>(2x^2+1/[x^3])^10`
Xét số hạng thứ `k+1:`
`C_10 ^k (2x^2)^[10-k] (1/[x^3])^k ,0 <= k <= 10`
`=C_10 ^k 2^[10-k] x^[20-5k]`
Số hạng chứa `x_5` xảy ra `<=>20-5k=5<=>k=3`
Với `k=3` thì số hạng cần tìm là: `C_10 ^3 2^[10-3] x^5=15360 x^5`
\(C_2^2+C_3^2+...+C_n^2=C_3^3+C_3^2+C_4^2+...+C_n^2\) (do \(C_2^2=C_3^3=1\))
\(=C_4^3+C_4^2+C_5^2+...+C_n^2=C_5^3+C_5^2+...+C_n^2\)
\(=...=C_n^3+C_n^2=C_{n+1}^3\)
Do đó:
\(2C_{n+1}^3=3A_{n+1}^2\Leftrightarrow\dfrac{2.\left(n+1\right)!}{3!.\left(n-2\right)!}=\dfrac{3.\left(n+1\right)!}{\left(n-1\right)!}\)
\(\Leftrightarrow n-1=9\Rightarrow n=10\)
\(\Rightarrow P=\left(1-x-3x^3\right)^{10}=\sum\limits^{10}_{k=0}C_{10}^k\left(-x-3x^3\right)^k\)
\(=\sum\limits^{10}_{k=0}C_{10}^k\left(-1\right)^k\left(x+3x^3\right)^k=\sum\limits^{10}_{k=0}\sum\limits^k_{i=0}C_{10}^kC_k^i\left(-1\right)^kx^i.3^{k-i}.x^{3\left(k-i\right)}\)
\(=\sum\limits^{10}_{k=0}\sum\limits^k_{i=0}C_{10}^kC_k^i\left(-1\right)^k.3^{k-i}.x^{3k-2i}\)
Ta có: \(\left\{{}\begin{matrix}0\le i\le k\le10\\i;k\in N\\3k-2i=4\end{matrix}\right.\) \(\Rightarrow\left(i;k\right)=\left(1;2\right);\left(4;4\right)\)
Hệ số: \(C_{10}^2C_2^1\left(-1\right)^2.3^1+C_{10}^4C_4^4.\left(-1\right)^4.3^0=...\)
\(\Rightarrow he-so:\left[{}\begin{matrix}C^9_{10}C^1_9\left(-3\right)^{10-9}\left(-1\right)=270\\C^{10}_{10}C^4_{10}\left(-3\right)^{10-10}.\left(-1\right)^4=210\end{matrix}\right.\)
Với k \(\in\)N* ; ta có : \(kC_n^k=k.\dfrac{n!}{\left(n-k\right)!k!}=\dfrac{n!}{\left(n-k\right)!\left(k-1\right)!}=\dfrac{n\left(n-1\right)!}{\left[n-1-\left(k-1\right)\right]!\left(k-1\right)!}=nC_{n-1}^{k-1}\)
Khi đó : \(C_n^1+2C_n^2+...+nC^n_n\) = \(\Sigma^n_{k=1}nC^{k-1}_{n-1}\)
= \(n\left(C_{n-1}^0+C_{n-1}^1+...+C_{n-1}^{n-1}\right)\) \(=n.\left(1+1\right)^{n-1}=n.2^{n-1}\) ( đpcm )
Ta có:
\(k.C_n^k=k.\dfrac{n!}{\left(n-k\right)!.k!}=n.\dfrac{\left(n-1\right)!}{\left(n-1-\left(k-1\right)\right)!\left(k-1\right)!}=n.C_{n-1}^{k-1}\)
Do đó:
\(1C_n^1+2C_n^2+...+nC_n^n\)
\(=n.C_{n-1}^0+nC_{n-1}^1+...+n\left(C_{n-1}^{n-1}\right)\)
\(=n\left(C_{n-1}^0+C_{n-1}^1+...+C_{n-1}^{n-1}\right)\)
\(=n.2^{n-1}\)
\(S=3C_0^n+\left(4+3\right)C_n^1+\left(4.2+3\right)C_n^2+...+\left(4n+3\right)C_n^n=S_1+S_2\)
Với \(S_1=3\left(C_n^0+C_n^1+...+C_n^n\right)\)
Dễ dàng thấy \(S_1=3.2^n\)
\(S_2=4.C_n^1+4.2C_n^2+...+4.n.C_n^n=4\left(1C_n^1+2C_n^2+...+nC_n^n\right)\)
Nhận thấy tất cả các số hạng \(S_2\) đều có dạng \(k.C_n^k\)
Ta có: \(k.C_n^k=k.\dfrac{n!}{k!\left(n-k\right)!}=\dfrac{n!}{\left(k-1\right)!\left(n-k\right)!}=n.\dfrac{\left(n-1\right)!}{\left(k-1\right)!.\left[\left(n-1\right)-\left(k-1\right)\right]!}=n.C_{n-1}^{k-1}\)
Nên:
\(S_2=4\left(nC_{n-1}^0+nC_{n-1}^1+...+nC_{n-1}^{n-1}\right)=4n.2^{n-1}=2n.2^n\)
Vậy \(S=S_1+S_2=\left(2n+3\right).2^n\)
Xét khai triển:
\(\left(1+x\right)^n=C_n^0+C_n^1x+C_n^2x^2+...+C_n^nx^n\)
\(\Leftrightarrow x\left(1+x\right)^n=C_n^0x+C_n^1x^2+C_n^2x^3+...+C_n^nx^{n+1}\)
Đạo hàm 2 vế:
\(\left(1+x\right)^n+nx\left(1+x\right)^{n-1}=C_n^0+2C_n^1x+3C_n^2x^2+...+\left(n+1\right)C_n^nx^n\)
Thay \(x=1\)
\(\Rightarrow2^n+n.2^{n-1}=1+2C_n^1+3C_n^2+...+\left(n+1\right)C_n^n\)
\(\Rightarrow2^{n-1}\left(2+n\right)-1=111\)
\(\Rightarrow2^{n-1}\left(2+n\right)=112=2^4.7\)
\(\Rightarrow n=5\)
\(\left(x^2+\dfrac{2}{x}\right)^5=\sum\limits^5_{k=0}C_5^kx^{2k}.2^{5-k}.x^{k-5}=\sum\limits^5_{k=0}C_5^k.2^{5-k}.x^{3k-5}\)
\(3k-5=4\Rightarrow k=3\Rightarrow\) hệ số: \(C_5^3.2^2\)