Nhờ các bạn giúp nha
x/z+y+1=y/x+z+1=z/x+y-2=x+y-z
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(\frac{x}{y+z+1}=\frac{y}{x+z+1}=\frac{z}{x+y+1}=\frac{x+y+z}{2\left(x+y+z\right)+3}=x+y+z\)
=> 2(x+y+z) +3 =1=> x+y+z=-1
Luôn đùng Vói mọi x;y;z khác o sao cho x+y+z = -1
b)\(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}=\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}=\frac{x+y+z}{\frac{3}{2}+\frac{4}{3}+\frac{5}{4}}=\frac{49}{\frac{49}{12}}=12\)
x= 3/2 .12=18
y= 4/3 .12=16
z=5/4 .12=15
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{y+z}=\frac{y}{z+x}=\frac{z}{x+y}\Rightarrow\frac{y+z}{x}=\frac{z+x}{y}=\frac{x+y}{z}=\frac{y+z+z+x+x+y}{x+y+z}\)\(=\frac{2\left(x+y+z\right)}{x+y+z}=2\)
\(\Rightarrow\frac{y+z}{x}+\frac{z+x}{y}+\frac{x+y}{z}=2+2+2=6\)
Vì bài toán không yêu cầu tìm x; y; z nên ta có cách giải ngắn gọn thế thôi nha bn.
theo tính chất tỷ lệ thức
(y+z+1)/x = (x+z+2)/y = (x+y-3)/z = (y+z+1+x+z+2+x+y-3)/(x+y+z) = 2(x+y+z)/(x+y+z) = 2
=> 1/(x+y+z) = 2
<=> x + y + z = 1/2 <=> y + z = 1/2 - x (1)
.(y+z+1)/x = 2 <=> y + z + 1 = 2x
kết hợp với (1) => 1/2 - x + 1 = 2x
<=> x = 1/2 => y + z = 0 <=> y = -z
có (x+y-3)/z = 2
<=> x + y - 3 = 2z
<=> y - 2z = 5/2
do y = -z => -3z = 5/2 <=> z = -5/6
y = 5/6
Vậy nghiệm tìm được (x;y;z) = (1/2;5/6;-5/6)
Điều kiện: x,y,z khác 0 (hiển nhiên x + y + z khác 0)
theo tính chất tỷ lệ thức
(y+z+1)/x = (x+z+2)/y = (x+y-3)/z = (y+z+1+x+z+2+x+y-3)/(x+y+z) = 2(x+y+z)/(x+y+z) = 2
=> 1/(x+y+z) = 2
<=> x + y + z = 1/2 <=> y + z = 1/2 - x (1)
.(y+z+1)/x = 2 <=> y + z + 1 = 2x
kết hợp với (1) => 1/2 - x + 1 = 2x
<=> x = 1/2 => y + z = 0 <=> y = -z
có (x+y-3)/z = 2
<=> x + y - 3 = 2z
<=> y - 2z = 5/2
do y = -z => -3z = 5/2 <=> z = -5/6
y = 5/6
Vậy nghiệm tìm được (x;y;z) = (1/2;5/6;-5/6)
còn cách khác đây
Ap dung tinh chat day ti so bang nhau :
(y+z+1)/x = (x+z+2)/y = (x+y-3)/z = (y+z+1+x+z+2+x+y-3)/(x+y+z) = 2(x+y+z)/(x+y+z) = 2
=> 1/(x+y+z) = 2
<=> x + y + z = 1/2 <=> y + z = 1/2 - x (1)
(y+z+1)/x = 2 <=> y + z + 1 = 2x
kết hợp với (1) => 1/2 - x + 1 = 2x
<=> x = 1/2 => y + z = 0 <=> y = -z
có (x+y-3)/z = 2
<=> x + y - 3 = 2z
<=> y - 2z = 5/2
do y = -z => -3z = 5/2 <=> z = -5/6 y = 5/6
Vậy nghiệm tìm được (x;y;z) = (1/2;5/6;-5/6)
Không mất tính tổng quát , giả sử : 0 < x < y < z
\(\Rightarrow x+y+z< z+z+z\)
\(\Rightarrow3xyz< 3z\)
\(\Rightarrow xy< 1\)( vô lí vì do x ; y nguyên dương và khác nhau nên xy > 1 )
Vậy không tồn tại 3 số x , y , z nguyên dương đã cho .
Bạn đã ib nhờ mik thì mik làm cho trót vại UwU
\(\frac{1}{x\left(x-y\right)\left(x-z\right)}+\frac{1}{y\left(y-z\right)\left(y-x\right)}+\frac{1}{z\left(z-x\right)\left(z-y\right)}.\)
\(=-\frac{1}{x\left(x-y\right)\left(z-x\right)}-\frac{1}{y\left(y-z\right)\left(x-y\right)}-\frac{1}{z\left(z-x\right)\left(y-z\right)}\)
\(=-\frac{y^2x-yz^2}{xyz\left(x-y\right)\left(z-x\right)\left(y-z\right)}-\frac{xz^2-x^2z}{xyz\left(x-y\right)\left(z-x\right)\left(y-z\right)}-\frac{x^2y-xy^2}{xyz\left(x-y\right)\left(z-x\right)\left(y-z\right)}\)
\(=\frac{-y^2z+yz^2-xz^2+x^2z-x^2y+xy^2}{xyz\left(x-y\right)\left(z-x\right)\left(y-z\right)}\)
\(=\frac{-\left(y^2z-x^2z\right)+\left(yz^2-xz^2\right)-\left(x^2y-xy^2\right)}{xyz\left(x-y\right)\left(z-x\right)\left(y-z\right)}\)
\(=\frac{-z\left(y^2-x^2\right)+z^2\left(y-x\right)-xy\left(x-y\right)}{xyz\left(x-y\right)\left(z-x\right)\left(y-z\right)}\)
\(=\frac{-z\left(y-x\right)\left(x+y\right)+z^2\left(y-x\right)+xy\left(y-x\right)}{xyz\left(x-y\right)\left(z-x\right)\left(y-z\right)}\)
\(=\frac{\left(y-x\right)\left[-z\left(x+y\right)+x^2+xy\right]}{xyz\left(x-y\right)\left(z-x\right)\left(y-z\right)}\)
\(=\frac{\left(y-x\right)\left[-z\left(x+y\right)+x^2+xy\right]}{-xyz\left(y-x\right)\left(z-x\right)\left(y-z\right)}\)
\(=-\frac{-z\left(x+y\right)+z^2+xy}{xyz\left(z-x\right)\left(y-z\right)}\)
\(=-\frac{-zx-zy+z^2+xy}{xyz\left(z-x\right)\left(y-z\right)}\)
\(=\frac{-\left(zx-xy\right)-\left(zy-z^2\right)}{xyz\left(z-x\right)\left(y-z\right)}\)
\(=\frac{-x\left(z-y\right)-z\left(y-z\right)}{xyz\left(z-x\right)\left(y-z\right)}\)
\(=\frac{x\left(y-z\right)-z\left(y-z\right)}{xyz\left(z-x\right)\left(y-z\right)}\)
\(=\frac{\left(y-z\right)\left(x-z\right)}{xyz\left(z-x\right)\left(y-z\right)}\)
\(=\frac{x-z}{xyz\left(z-x\right)}\)
\(=\frac{-\left(z-x\right)}{xyz\left(z-x\right)}\)
\(=\frac{-1}{xyz}\)