Tìm giá trị của T sao cho:
P+Q=R
R+S=T
P+T=U
Q+S+U=40
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: tìm được 1 giá trị duy nhất tương ứng của s
b: Có thể tìm được 2 giá trị tương ứng của t
c:
s | 1/8 | 1/4 | 1/2 | 1 | 2 | 4 | 8 | 16 |
t | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 |
Với t = 1, ta có s = 50.t - 8 = 50.1-8 = 42 (km)
Với t = 2, ta có s = 50.t - 8 = 50.2-8 = 92 (km)
Với t = 3, ta có s = 50.t - 8 = 50.3-8 = 142 (km)
Với t = 4, ta có s = 50.t - 8 = 50.4-8 = 92 (km)
.......
s là hàm số của t vì đại lượng s phụ thuộc vào đại lượng thay đổi t và với mỗi giá trị của t ta chỉ xác định được một giá trị tương ứng của s.
Với t = 1, ta có s = 50.t - 8 = 50.1-8 = 42 (km)
Với t = 2, ta có s = 50.t - 8 = 50.2-8 = 92 (km)
Với t = 3, ta có s = 50.t - 8 = 50.3-8 = 142 (km)
Với t = 4, ta có s = 50.t - 8 = 50.4-8 = 92 (km)
.......
s là hàm số của t vì đại lượng s phụ thuộc vào đại lượng thay đổi t và với mỗi giá trị của t ta chỉ xác định được một giá trị tương ứng của s.
bn tự thay t và s mà đề cho vào rồi tính bình thường
còn câu cuối tương tự
Để \(A\)là 1 số nguyên
\(\Leftrightarrow x-5⋮x-4\)
\(\Leftrightarrow x-4-1⋮x-4\)
Mà \(x-4⋮x-4\)
\(\Rightarrow1⋮x-4\)
\(\Leftrightarrow x-4\inƯ\left(1\right)=\left\{1;-1\right\}\)
\(\Leftrightarrow x\in\left\{5;3\right\}\)
a, \(I=s\left(s^2-t\right)+\left(t^2+s\right)=s^3-st+t^2+s\)
Thay t = -1 và s = 1 vào biểu thức trên ta được :
\(1+1+1+1=4\)
b, \(N=u^2\left(u-v\right)-v\left(v^2-u^2\right)=u^2\left(u-v\right)+v\left(u+v\right)\left(u-v\right)\)
\(=\left(u-v\right)\left(u^2+v\left(u+v\right)\right)\)
Thay \(u=0,5=\frac{1}{2};v=-\frac{1}{2}\)
\(=\left(\frac{1}{2}+\frac{1}{2}\right).\frac{1}{4}=\frac{1}{4}\)
a) Rút gọn I = s 3 + t 3 Þ I = 0.
b) Rút gọn N = u 3 – v 3 Þ N = 0.
ta co P+Q= R =>Q= R-P, R+S=T =>S=T-R, P+T=U (1)
thay (1) vao Q+S+U ta co Q+S+U=R- P+T-R+P+T=2.T=40 =>T=20