Giải phương trình
\(x^2+9x-400=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+9x-400=0\)
\(\Leftrightarrow x^2-16x+25x-400=0\)
\(\Leftrightarrow x\left(x-16\right)+25\left(x-16\right)=0\)
\(\Leftrightarrow\left(x-16\right)\left(x+25\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=16\\x=-25\end{cases}}\)
\(a=1;b=9;c=-400\)
\(\Delta=b^2-4ac=9^2-4.1.\left(-400\right)=1681>0\)
Phương trình có 2 nghiệm phân biệt
\(x_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-9+\sqrt{1681}}{2.1}=16\)
\(x_2=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-9-\sqrt{1681}}{2.1}=-25\)
x2+9x+20,25-420,25
=(x-4,5)2-20,252=(x+4,5-20,5)(x+4,5+20,25)=(x-16)(x+24,75)
x^2+9x+20,25-420,25
=(x-4,5)-20,5^2=(x+4,5-20,5)(x+4,5+20,5)=(x-16)(x+25)
Sorry!Bài này mới đúng!
Bài 1: ĐKXĐ: $2\leq x\leq 4$
PT $\Leftrightarrow (\sqrt{x-2}+\sqrt{4-x})^2=2$
$\Leftrightarrow 2+2\sqrt{(x-2)(4-x)}=2$
$\Leftrightarrow (x-2)(4-x)=0$
$\Leftrightarrow x-2=0$ hoặc $4-x=0$
$\Leftrightarrow x=2$ hoặc $x=4$ (tm)
Bài 2:
PT $\Leftrightarrow 4x^3(x-1)-3x^2(x-1)+6x(x-1)-4(x-1)=0$
$\Leftrightarrow (x-1)(4x^3-3x^2+6x-4)=0$
$\Leftrightarrow x=1$ hoặc $4x^3-3x^2+6x-4=0$
Với $4x^3-3x^2+6x-4=0(*)$
Đặt $x=t+\frac{1}{4}$ thì pt $(*)$ trở thành:
$4t^3+\frac{21}{4}t-\frac{21}{8}=0$
Đặt $t=m-\frac{7}{16m}$ thì pt trở thành:
$4m^3-\frac{343}{1024m^3}-\frac{21}{8}=0$
$\Leftrightarrow 4096m^6-2688m^3-343=0$
Coi đây là pt bậc 2 ẩn $m^3$ và giải ta thu được \(m=\frac{\sqrt[3]{49}}{4}\) hoặc \(m=\frac{-\sqrt[3]{7}}{4}\)
Khi đó ta thu được \(x=\frac{1}{4}(1-\sqrt[3]{7}+\sqrt[3]{49})\)
Ta có
g ' ( x ) = ( 2 x + 3 ) . ( x − 2 ) − 1. ( x 2 + 3 x − 9 ) ( x − 2 ) 2 = x 2 − 4 x + 3 ( x − 2 ) 2
Mà g ' ( x ) ≤ 0
⇔ x 2 − 4 x + 3 ≤ 0 x − 2 ≠ 0 ⇔ 1 ≤ x ≤ 3 x ≠ 2 ⇔ x ∈ 1 ; 3 \ 2
Vậy tập nghiệm bất phương trình là: S=[1 ; 3]\{2}
Chọn đáp án B
\(9x^2+2=0\)
Với mọi \(x\) ta có: \(x^2\ge0\)
\(\Rightarrow9x^2\ge0\)
\(\Rightarrow9x^2+2\ge2>0\)
\(\Rightarrow9x^2+2\ne0\)
Vậy phương trình vô nghiệm
\(\left(x+1\right)^2=2\)
\(\Rightarrow\left(x+1\right)^2=\left(\pm\sqrt{2}\right)^2\)
\(\Rightarrow\orbr{\begin{cases}x+1=\sqrt{2}\\x+1=-\sqrt{2}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\sqrt{2}-1\\x=-\sqrt{2}-1\end{cases}}\)
\(\left(x-2\right)^2=7\)
\(\Rightarrow\left(x-2\right)^2=\left(\pm\sqrt{7}\right)^2\)
\(\Rightarrow\orbr{\begin{cases}x-2=\sqrt{7}\\x-2=-\sqrt{7}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\sqrt{7}+2\\x=2-\sqrt{7}\end{cases}}\)
Đặt \(\left(x^2-x+1\right)^2=a;x^2=b\left(a,b\ge0\right)\)
\(PT\Leftrightarrow a^2-10ab+9b^2=0\\ \Leftrightarrow a^2-9ab-ab+9b^2=0\\ \Leftrightarrow\left(a-b\right)\left(a-9b\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}a=b\\a=9b\end{matrix}\right.\\ \forall a=b\Leftrightarrow\left(x^2-x+1\right)^2-x^2=0\\ \Leftrightarrow\left(x^2-2x+1\right)\left(x^2+1\right)=0\\ \Leftrightarrow x=1\\ \forall a=9b\Leftrightarrow\left(x^2-x+1\right)^2-9x^2=0\\ \Leftrightarrow\left(x^2-4x+1\right)\left(x^2+2x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-1\\x=2+\sqrt{3}\\x=2-\sqrt{3}\end{matrix}\right.\)
a: \(\Leftrightarrow\left(x^2+x\right)^2-5\left(x^2+x\right)-6=0\)
\(\Leftrightarrow\left(x+3\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=2\end{matrix}\right.\)
\(b,x^2+3x-2=0\\ \Delta=3^2-4.1.\left(-2\right)=17\\ =>\left[{}\begin{matrix}x_1=\dfrac{-3+\sqrt{17}}{2}\\x_2=\dfrac{-3-\sqrt{17}}{2}\end{matrix}\right.\)
Mấy câu còn lại mình giải rồi
x=16 hoặc x=-24,75
lớp 8 mà học cách nhẩm nghiệm thì hơi khó , mình cho bạn cái này lên lớp 9 mới học
- nếu x1 ; x2 là 2 nghiệm của pt ax^2 + bx +c =0 ( a khác 0 ) thì
- x1 + x2 = -b/a
- x1*x2 = c/a
áp dụng bài trên
gọi x1, x2 là 2 nghiệm của pt
x1 + x2 = -9/1=-9
x1*x2 = -400/1 =-400
nhẩm lấy 2 số sao cho tổng = -9 , tích = 400
ta thấy có : -25 + 16 =-9
và -25*16 = -400
vậy x1 = 16 ; x2=-25
lớp 8 thì chưa học cái này nên kh trình bày ta chỉ nhẩm ngoài nháp va khi trinh bày ta sẽ làm như sau
x^2 + 9x -400=0
tách 9x = -25x + 16 x
pt <=> x^2+25x - 16 x - 400 =0
<=> x( x + 25 ) + 16( x +25 )=0
<=> (x+25) ( x + 16 ) = 0
<=> x= -25 và x= 16
ngoài ra còn có một số trường hợp đặc biết như sau :
** Nếu pt ax^2 + bx + c + 0 (â # 0 ) có a + b + c =0 thì pt có 1 nghiệp là x1 = 1 , còn nghiệm kia là x2=c/a
** Nếu pt ax^2 + bx + c = 0 có a - b + c = 0 thì pt có 1 nghiệm là x1 = -1 còn nghiệm kia x2 = -c/a
sang lớp 9 ta có cách giả pt bậc 2 nên bây giờ thì dùng tạm cái này