cho tam giác ABC vuông tại A, tia phân giác của góc B cắt AC tại D . Vẽ DE vuông góc với BC . Đường thẳng DE cắt AB tại K
a) chứng minh tam giác BAD= tam giác BED
b) chứng minh tam giác ADK = tam giác EDC
c) chứng minh AE//KC
d) Cho AB=3 ; BC=5 . Tính KC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBAD và ΔBED có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔBAD=ΔBED
b, Ta có : góc BAD = góc BED=90 độ (hai góc tương ứng)
=> góc BED là góc V
Ta có ; DA=DE (hai cạnh tương ứng)
a: XétΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔABD=ΔEBD
b: \(\widehat{DBC}=\dfrac{60^0}{2}=30^0\)
Xét ΔDBC có \(\widehat{DBC}=\widehat{DCB}\)
nên ΔDBC cân tại D
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=góc EBD
=>ΔBAD=ΔBED
b: BA=BE
DA=DE
=>BD la trung trực của AE
c: Xét ΔBEF vuông tại E và ΔBAC vuông tại A co
BE=BA
góc EBF chung
=>ΔBEF=ΔBAC
=>BF=BC
Xét ΔFCB có BA/BF=BE/BC
nên AE//CF
a: Xét ΔACD vuông tại A và ΔMED vuông tại M có
DC=DE
góc ADC=góc MDE
=>ΔACD=ΔMED
b: ΔACD=ΔMED
=>góc ACD=góc MEC
=>góc NEC=góc NCE
=>NE=NC
Xin lỗi mk ko biết vẽ hình trên máy
a) Xét tam giác ABD và tan giác EBD có :
BD chung
góc ABD = góc EBD ( vì BD la phân giác góc B )
góc A = góc E ( = 90 )
=> Tam giác ABD = tam giác EBD ( cạnh huyền- góc nhọn )
=> AD = DE
Chúc bạn hc tốt
a: XétΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó:ΔBAD=ΔBED
Xét ΔADF vuông tại A và ΔEDC vuông tại E có
DA=DE
\(\widehat{ADF}=\widehat{EDC}\)
Do đó: ΔADF=ΔEDC
Suy ra: DF=DC
hay ΔDFC cân tại D
b: Ta có: DE=DA
mà DA<DF
nên DE<DF
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔBAD=ΔBED
b: Xét ΔADK vuông tại A và ΔEDC vuông tại E có
DA=DE
\(\widehat{ADK}=\widehat{EDC}\)
Do đó: ΔADK=ΔEDC
c: Xét ΔBKC có BA/AK=BE/EC
nên AE//KC