K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 6 2016

Ta có:

a - 3b + 1 chia hết cho 7.

Mà ta có: 42a + 14b + 14 chia hết cho 7. 

Do đó ( 42a + 14 b + 14 ) + ( ( a - 3b + 1 ) = 43a +11b + 15 chia hết cho 7. ( đpcm) 

23 tháng 11 2023

Ta có:

a - 3b + 1 chia hết cho 7.

Mà ta có: 42a + 14b + 14 chia hết cho 7. 

Do đó ( 42a + 14 b + 14 ) + ( ( a - 3b + 1 ) = 43a +11b + 15 chia hết cho 7. ( đpcm) 

19 tháng 6 2016

7a - 21b + 5 = 7 ( a - 3b ) + 5 không chia hết cho 7.

Vậy 7a - 21b + 5 và 7 là hai số nguyên tố cùng nhau.

Vì ( 7a - 2b + 5 ) ( a - 3b + 1 ) chia hết cho 7 nên a - 3b + 1 chia hết cho 7.

Vì 42a + 14b + 14 chia hết cho 7 nên ( 42a + 14b + 14 ) + ( a - 3b + 1 ) chia hết cho 7.

Vậy 43a + 11b + 15 chia hết cho 7.

23 tháng 11 2023

Ta có:

a - 3b + 1 chia hết cho 7.

Mà ta có: 42a + 14b + 14 chia hết cho 7. 

Do đó ( 42a + 14 b + 14 ) + ( ( a - 3b + 1 ) = 43a +11b + 15 chia hết cho 7. ( đpcm) 

Có: a+5b chia hết cho 7

=> 2.(a+5b)\(⋮\) 7

 \(\Leftrightarrow2a+10b⋮7\)

 \(\Rightarrow2a+10-7b\) chia hết cho 7 ( do 7b chia hết cho 7 )

\(\Leftrightarrow2a+3b\)  chia hết cho 7 

=> điều phải chứng minh

10 tháng 7 2019

\(14a-7b+4=7\left(2a-b+1\right)-3⋮7̸\)\(\Rightarrow4a+2b+1⋮7\Leftrightarrow4a+21a+2b-14b+1+7⋮7\Leftrightarrow25a-12b+8⋮7\)

10 tháng 7 2019

\(14a-7b+4=7\times\left(2a-b\right)+4⋮̸7\)

\(\left(14a-7b+4\right)\left(4a+2b+1\right)⋮7\)

\(\Rightarrow4a+2b+1⋮7\)

\(21a-14b+7⋮7\)

\(\Rightarrow\left(4a+2b+1\right)+\left(21a-14b+7\right)⋮7\)

\(\Rightarrow\left(4a+21a\right)-\left(14b-2b\right)+\left(1+7\right)⋮7\)

\(\Rightarrow25a-12b+8⋮7\)

NV
2 tháng 1 2024

- Nếu \(2a+3b⋮7\Rightarrow4\left(2a+3b\right)⋮7\Rightarrow8a+12b⋮7\)

\(\Rightarrow8a+5b+7b⋮7\)

Mà \(7b⋮7\) với mọi  b nguyên \(\Rightarrow8a+5b⋮7\)

- Nếu \(8a+5b⋮7\), do \(7b⋮7\Rightarrow8a+5b+7b⋮7\Rightarrow8a+12b⋮7\)

\(\Rightarrow4\left(2a+3b\right)⋮7\)

Mà 4 và 7 nguyên tố cùng nhau \(\Rightarrow2a+3b⋮7\)