tim gia tri nho nhat cua x^2+y^2-x+6y+10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Q=2x^2-6x\)
\(Q=2.(x^2 - 2.\dfrac{3}{2}.x+\dfrac{9}{4}\text{)}-\dfrac{9}{2} \)
\(Q=2.(x-\dfrac{3}{2})^2-\dfrac{9}{2}\ge\dfrac{-9}{2}\)
\(\Rightarrow Min_A=\dfrac{-9}{2}\) khi \(x=\dfrac{3}{2}\) .
\(M=x^2+y^2-x+6y+10\)
\(M=\left(x^2-x+\dfrac{1}{4}\right)+\left(y^2+6y+9\right)+\dfrac{3}{4}\)
\(M=\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}\)
\(M=\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2\ge0\)
\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
\(\Rightarrow Min_M=\dfrac{3}{4}\) khi \(x=\dfrac{1}{2},y=-3.\)
Đặt x = 4 - m; y = 4 + m
=> x2 + y2 = (4 - m)2 + (4 + m)2 = 16 - 8m + m2 + 16 + 8m + m2 = 32 + 2m2
Vì m2 >= 0 => 2m2 >= 0
=> 32 + 2m2 >= 32
Dấu bằng xảy ra khi: m2 = 0 => m = 0
Vậy x2 + y2min = 32 <=> x = y = 4
Ta có: \(x+y=4\) \(\Rightarrow\) \(y=4-x\)
Do đó: \(A=x^2+y^2=x^2+\left(4-x\right)^2=x^2+16-8x+x^2=2x^2-8x+16=2\left(x^2-4x+4\right)+8\)
\(A=2\left(x-2\right)^2+8\ge8\) với mọi \(x;y\)
Dấu \("="\) xảy ra \(\Leftrightarrow\) \(\left(x-2\right)^2=0\)
\(\Leftrightarrow\) \(x-2=0\)
\(\Leftrightarrow\) \(x=2\)
\(\Rightarrow\) \(y=2\) (do \(x+y=4\) )
Vậy, \(Min\) \(A=8\) \(\Leftrightarrow\) \(x=y=2\)
\(A=2018-\left|x-7\right|-\left|y+2\right|\)
Ta có: \(\hept{\begin{cases}\left|x-7\right|\ge0\forall x\\\left|y+2\right|\ge0\forall y\end{cases}}\Rightarrow2018-\left|x-7\right|-\left|y+2\right|\le2018\)
\(A=2018\Leftrightarrow\hept{\begin{cases}\left|x-7\right|=0\\\left|y+2\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=7\\y=-2\end{cases}}}\)
Vậy \(A_{m\text{ax}}=2018\Leftrightarrow\hept{\begin{cases}x=7\\y=-2\end{cases}}\)
Tham khảo~
Vì |x-3| luôn lớn bằng 0 với mọi x
=> |x - 3| + (-100) luôn lớn bằng -100 với mọi x
=> A luôn lớn bằng 100
Dấu "=" xảy ra <=> |x-3| = 0
=> x - 3 = 0
=> x = 3
Vậy Min A = -100 <=> x = 3
Ta có |x - 3| > 0
=> |x - 3| + (-100) > - 100
hay A > 100
Vậy GTNN của A là 100 <=> |x - 3| = 0 <=> x - 3 = 0 <=> x = 3
Đặt \(A=x^2+y^2-x+6y+10\)
\(=\left(x-\frac{1}{2}\right)^2+\left(y-3\right)^2+\frac{3}{4}\)
\(\left(x-\frac{1}{2}\right)^2\ge0;\)\(\left(y-3\right)^2\ge0\)
\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\left(y-3\right)^2\ge0\)
\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\left(y-3\right)^2+\frac{3}{4}\ge0+\frac{3}{4}=\frac{3}{4}\)
\(\Rightarrow A\ge\frac{3}{4}\)
Dấu"=" xảy ra khi \(\left(x-\frac{1}{2}\right)^2=0\Leftrightarrow x=\frac{1}{2};\left(y-3\right)^2=0\Leftrightarrow y=3\)
Vậy \(MinA=\frac{3}{4}\Leftrightarrow x=\frac{1}{2};y=3\)