Cho parabol y = (a - 2)x^2 (a khác 1). Tìm a để đồ thị hàm số (1) đi qua điểm E(2;3).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Thay x=1 và y=-1 vào (d), ta được:
\(\left(m-2\right)\cdot1+m+1=-1\)
=>m-2+m+1=-1
=>2m-1=-1
=>2m=0
=>m=0
b: Thay y=0 vào y=x+2, ta được:
x+2=0
=>x=-2
Thay x=-2 và y=0 vào y=(m-2)x+m+1, ta được:
-2(m-2)+m+1=0
=>-2m+4+m+1=0
=>5-m=0
=>m=5
\(a,\Leftrightarrow2m-2+m+3=4\Leftrightarrow m=1\\ b,\text{Gọi điểm cố định mà (1) luôn đi qua là }A\left(x_0;y_0\right)\\ \Leftrightarrow y_0=\left(m-1\right)x_0+m+3\\ \Leftrightarrow mx_0-x_0+m+3-y_0=0\\ \Leftrightarrow m\left(x_0+1\right)+\left(3-x_0-y_0\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}x_0+1=0\\3-x_0-y_0=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0=-1\\y_0=4\end{matrix}\right.\Leftrightarrow A\left(-1;4\right)\)
Vậy (1) luôn đi qua A(-1;4)
a) Hàm số (1) đồng biến khi: \(m-1>0\Rightarrow m>1\)
b) (d) đi qua điểm A(-1;2) suy ra x = -1 và y = 2
Thay x = -1 và y = 2 vào hàm số (1) ta có: \(2=\left(m-1\right)\times\left(-1\right)+2-m\Leftrightarrow2=1-m+2-m\)
\(2=-2m+3\Leftrightarrow m=\frac{1}{2}\)
Câu 2:
a) Để đồ thị hàm số \(y=\left(m+1\right)x^2\) đi qua điểm A(1;2) thì
Thay x=1 và y=2 vào hàm số \(y=\left(m+1\right)x^2\), ta được:
m+1=2
hay m=1
Vậy: m=1
Thay x=2 và y=3 vào (1), ta được:
4(a-2)=3
=>a-2=3/4
hay a=3/4+2=11/4
Thay x=2 và y=3 vào (1), ta được:
4(a-2)=3
=>a-2=3/4
hay a=3/4+2=11/4