K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 6 2016

đây là  1 trong những bất đẳng thức cơ bản bạn mua sách về mà tham khảo

15 tháng 6 2016

Ta có:

\(VT^2\ge VP^2\)

\(\left(\left|x-y\right|\right)^2\ge\left(\left|x\right|-\left|y\right|\right)^2\)

\(x^2+y^2-2xy\ge x^2+y^2-2\left|xy\right|\)

\(-2xy\ge-2\left|xy\right|\)

\(2xy\le2\left|xy\right|\)

Điều này đúng nên BĐT đúng

2 tháng 3 2018

ta có \(VT=\left(x^3+y^3\right)^2=\left(x.x^2+y.y^2\right)^2\le\left(x^2+y^2\right)\left(x^4+y^4\right)\) (đpcm)

27 tháng 3 2017

Ta có:

\(A=\left(x+y\right)\left(x+2y\right)\left(x+3y\right)\left(x+4y\right)+y^4\)

\(=\left(x^2+5xy+4y^2\right)\left(x^2+5xy+6y^2\right)+y^4\)

Đặt \(x^2+5xy+5y^2=t\left(t\in Z\right)\) thì:

\(A=\left(t-y^2\right)\left(t+y^2\right)+y^4\)

\(=t^2-y^4+y^4=t^2\)

\(=\left(x^2+5xy+5y^2\right)^2\)

Vì \(x,y,z\in Z\) nên:

\(x^2\in Z,5xy\in Z,5y^2\in Z\)

\(\Leftrightarrow x^2+5xy+5y^2\in Z\)

Vậy \(A\) là số chính phương (Đpcm)

14 tháng 12 2019

Với mọi \(x,y\in Q\) ta có:

\(\left\{{}\begin{matrix}x\le\left|x\right|;-x\le\left|x\right|\\y\le\left|y\right|;-y\le\left|y\right|\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x+y\le\left|x\right|+\left|y\right|\\-x-y\le\left|x\right|+\left|y\right|\end{matrix}\right.\)

\(\Rightarrow x+y\ge-\left(\left|x\right|+\left|y\right|\right)\)

\(\Rightarrow-\left(\left|x\right|+\left|y\right|\right)\le x+y\le\left|x\right|+\left|y\right|\)

\(\Rightarrow\left|x+y\right|\le\left|x\right|+\left|y\right|\left(đpcm\right).\)

Dấu '' = '' xảy ra khi \(xy\ge0.\)

Chúc bạn học tốt!

2 tháng 8 2023

Ta có \(\left(x+y\right)\left(x+2y\right)\left(x+3y\right)\left(x+4y\right)+y^4\)

\(=\left(x+y\right)\left(x+4y\right)\left(x+2y\right)\left(x+3y\right)+y^4\)

\(=\left(x^2+5xy+4y^2\right)\left(x^2+5xy+6y^2\right)+y^4\)

\(=\left(x^2+5xy+5y^2-y^2\right)\left(x^2+5xy+5y^2+y^2\right)+y^4\)

\(=\left(x^2+5xy+5y^2\right)^2\) là số chính phương. \(\Rightarrowđpcm\)

22 tháng 1 2017

ta có (x+y)(x+2y)(x+3y)(x+4y)+y^4

=(x+y)(x+4y)(x+2y)(x+3y)+y^4

=(x^2+5xy+4y^2)(x^2+5xy+6y^2)+y^4

đặt x^2+5xy=a

<=>A=a(a+2y^2)+y^4

=a^2+2.a.y^2+y^4

=(a+y^2)^2

là scp

8 tháng 1 2017

\(\left(1+x^2\right)\left(1+y^2\right)+4xy+2\left(x+y\right)\left(1+xy\right)\)\(\)

\(=1+y^2+x^2+x^2y^2+4xy+2\left(x+y\right)\left(1+xy\right)\)

 \(=x^2+2xy+y^2+x^2y^2+2xy+1+2\left(x+y\right)\left(1+xy\right)\)

\(=\left(x+y\right)^2+\left(xy+1\right)^2+2\left(x+y\right)\left(xy+1\right)\)

\(=\left(x+y+xy+1\right)^2\)