K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(=2\sqrt{20\sqrt{3}}-2\sqrt{5\sqrt{3}}-3\cdot\sqrt{20\sqrt{3}}\)

\(=4\sqrt{5\sqrt{3}}-2\sqrt{5\sqrt{3}}-6\sqrt{5\sqrt{3}}=-4\sqrt{5\sqrt{3}}\)

b: \(=2\sqrt{5\sqrt{3}}-4\sqrt{2\sqrt{3}}-6\sqrt{5\sqrt{3}}=-4\sqrt{5\sqrt{3}}-4\sqrt{2\sqrt{3}}\)

30 tháng 5 2023

cảm ơn anh ạ 

NV
25 tháng 6 2021

\(x=\dfrac{3\sqrt[3]{8-3\sqrt{5}}}{\sqrt[3]{57}}.\sqrt[3]{8+3\sqrt{5}}=\dfrac{3\sqrt[3]{\left(8-3\sqrt{5}\right)\left(8+3\sqrt[]{5}\right)}}{\sqrt[3]{57}}=\sqrt[3]{\dfrac{19}{57}}=\dfrac{1}{\sqrt[3]{3}}\)

\(y=\dfrac{\left(\sqrt[3]{3}+\sqrt[4]{2}\right)\left(\sqrt[3]{3}-\sqrt[4]{2}\right)}{\sqrt[3]{3}+\sqrt[4]{2}}+\dfrac{\left(\sqrt[4]{2}-\sqrt[3]{81}\right)\left(\sqrt[4]{2}+\sqrt[3]{81}\right)}{\sqrt[4]{2}-\sqrt[3]{81}}\)

\(=\sqrt[3]{3}-\sqrt[4]{2}+\sqrt[4]{2}+\sqrt[3]{81}=\sqrt[3]{3}+3\sqrt[3]{3}=4\sqrt[3]{3}\)

\(T=xy=\dfrac{4\sqrt[3]{3}}{\sqrt[3]{3}}=4\)

22 tháng 6 2023

\(I=\left(2\sqrt{3}-5\sqrt{27}+4\sqrt{12}\right):\sqrt{3}\)

\(=\left(2\sqrt{3}-5\sqrt{3}.\sqrt{3^2}+2\sqrt{2^2}.\sqrt{3}\right):\sqrt{3}\)

\(=\left(2\sqrt{3}-15\sqrt{3}+8\sqrt{3}\right):\sqrt{3}\)

\(=-5\sqrt{3}.\dfrac{1}{\sqrt{3}}\)

\(=-5\)

\(K=\sqrt{125}-4\sqrt{45}+3\sqrt{20}-\sqrt{80}\)

\(=\sqrt{5^2.5}-4\sqrt{3^2.5}+3\sqrt{2^2.5}-\sqrt{4^2.5}\)

\(=5\sqrt{5}-12\sqrt{5}+6\sqrt{5}-4\sqrt{5}\)

\(=\sqrt{5}.\left(5-12+6-4\right)\)

\(=-5\sqrt{5}\)

\(L=2\sqrt{9}+\sqrt{25}-5\sqrt{4}\)

\(=2\sqrt{3^2}+\sqrt{5^2}-5\sqrt{2^2}\)

\(=2.3+5-5.2\)

\(=1\)

\(N=2\sqrt{32}-5\sqrt{27}-4\sqrt{8}+3\sqrt{75}\)

\(=2.4\sqrt{2}-5.3\sqrt{3}-4.2\sqrt{2}+3.5\sqrt{3}\)

\(=8\sqrt{2}-8\sqrt{2}-15\sqrt{3}+15\sqrt{3}\)

\(=0\)

\(O=2\sqrt{3.5^2}-3\sqrt{3.2^2}+\sqrt{3.3^2}\)

\(=2.5\sqrt{3}-3.2\sqrt{3}+3\sqrt{3}\)

\(=10\sqrt{3}-6\sqrt{3}+3\sqrt{3}\)

\(=7\sqrt{3}\)

\(L=\dfrac{2\sqrt{3}-15\sqrt{3}+8\sqrt{3}}{\sqrt{3}}=2-15+8=-5\)

\(K=5\sqrt{5}-12\sqrt{5}+6\sqrt{5}-4\sqrt{5}=-5\sqrt{5}\)

L=2*3+5-5*2=5-4=1

N=8căn 2-8căn2-15căn3+15căn 3=0

O=10căn 3-6căn3+3căn3=7căn 3

16 tháng 10 2021

a: Ta có: \(A=\sqrt{8}-2\sqrt{18}+3\sqrt{50}\)

\(=2\sqrt{2}-6\sqrt{2}+15\sqrt{2}\)

\(=11\sqrt{2}\)

b: Ta có: \(B=\sqrt{125}-10\sqrt{\dfrac{1}{20}}+\dfrac{5-\sqrt{5}}{\sqrt{5}}\)

\(=5\sqrt{5}-\sqrt{5}+\sqrt{5}-1\)

\(=5\sqrt{5}-1\)

14 tháng 6 2016

=\(16\sqrt{2\sqrt{3}}-2\sqrt{5\sqrt{3}}-6\sqrt{5\sqrt{3}}\)=\(16\sqrt{2\sqrt{3}}-8\sqrt{5\sqrt{3}}\)

NV
6 tháng 7 2021

\(A=\dfrac{\sqrt{\left(\sqrt{5}+1\right)^2}-\sqrt{2}.\sqrt{6-2\sqrt{5}}+\sqrt{\left(\sqrt{10}-\sqrt{5}\right)^2}}{2\left(\sqrt{2}+1\right)}\)

\(=\dfrac{\sqrt{5}+1-\sqrt{2}\left(\sqrt{5}-1\right)+\sqrt{10}-\sqrt{5}}{2\left(\sqrt{2}+1\right)}\)

\(=\dfrac{\sqrt{5}+1-\sqrt{10}+\sqrt{2}+\sqrt{10}-\sqrt{5}}{2\left(\sqrt{2}+1\right)}\)

\(=\dfrac{\sqrt{2}+1}{2\left(\sqrt{2}+1\right)}=\dfrac{1}{2}\)