A=(1+1/1x3)x(1+1/2x4)x(1+1/3x5)x...x(1+1/99x101)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Xét thừa số tổng quát $1+\frac{1}{n(n+2)}=\frac{n(n+2)+1}{n(n+2)}=\frac{(n+1)^2}{n(n+2)}$
Khi đó:
$1+\frac{1}{1.3}=\frac{2^2}{1.3}$
$1+\frac{1}{2.4}=\frac{3^2}{2.4}$
.........
$1+\frac{1}{99.101}=\frac{100^2}{99.101}$
Khi đó:
$A=\frac{2^2.3^2.4^2......100^2}{(1.3).(2.4).(3.5)....(99.101)}$
$=\frac{(2.3.4...100)(2.3.4...100)}{(1.2.3...99)(3.4.5...101)}$
$=\frac{2.3.4...100}{1.2.3..99}.\frac{2.3.4...100}{3.4.5..101}$
$=100.\frac{2}{101}=\frac{200}{101}$
\(\left(1+\frac{1}{1\times3}\right)\times\left(1+\frac{1}{2\times4}\right)\times\left(1+\frac{1}{3\times5}\right)\times...\times\left(1+\frac{1}{99.101}\right)\)
\(=\left(\frac{3}{3}+\frac{1}{3}\right)\times\left(\frac{8}{8}+\frac{1}{8}\right)\times\left(\frac{15}{15}+\frac{1}{15}\right)\times...\times\left(\frac{9999}{9999}+\frac{1}{9999}\right)\)
\(=\frac{4}{3}\times\frac{9}{8}\times\frac{16}{15}\times...\times\frac{10000}{9999}\)
\(=\frac{4\times9\times16\times...\times10000}{3\times8\times15\times...\times9999}\)
\(=\frac{2\times2\times3\times3\times4\times4\times...\times100\times100}{1\times3\times2\times4\times3\times5\times...\times99\times101}\)
\(=\frac{2\times100}{101}=\frac{200}{101}\)
\(B=\left(1+\frac{1}{1\times3}\right)\times\left(1+\frac{1}{2\times4}\right)\times\left(1+\frac{1}{3\times5}\right)\times...\times\left(1+\frac{1}{99\times101}\right)\)
\(B=\frac{1\times3+1}{1\times3}\times\frac{2\times4+1}{2\times4}\times\frac{3\times5+1}{3\times5}\times...\times\frac{99\times101+1}{99\times101}\)
\(B=\frac{2\times2}{1\times3}\times\frac{3\times3}{2\times4}\times\frac{4\times4}{3\times5}\times...\times\frac{100\times100}{99\times101}\)
\(B=\frac{\left(2\times3\times4\times...\times100\right)\times\left(2\times3\times4\times...\times100\right)}{\left(1\times2\times3\times...\times99\right)\times\left(3\times4\times5\times...\times101\right)}\)
\(B=\frac{100\times2}{101}=\frac{200}{101}\)
\(A=\left(1+\frac{1}{1\cdot3}\right)\left(1+\frac{1}{2\cdot4}\right)\left(1+\frac{1}{3\cdot5}\right)\cdot...\cdot\left(1+\frac{1}{99\cdot101}\right)\)
\(A=\frac{4}{1\cdot3}\cdot\frac{9}{2\cdot4}\cdot\frac{16}{3\cdot5}\cdot...\cdot\frac{10000}{99\cdot101}\)
\(A=\frac{\left(2\cdot2\right)\left(3\cdot3\right)\left(4\cdot4\right)\cdot...\cdot\left(100\cdot100\right)}{\left(1\cdot3\right)\left(2\cdot4\right)\left(3\cdot5\right)\cdot...\cdot\left(99\cdot101\right)}\)
\(A=\frac{\left(2\cdot3\cdot4\cdot...\cdot100\right)\left(2\cdot3\cdot4\cdot...\cdot100\right)}{\left(1\cdot2\cdot3\cdot...\cdot99\right)\left(3\cdot4\cdot5\cdot...\cdot101\right)}\)
\(A=\frac{100\cdot2}{1\cdot101}\)
\(A=\frac{200}{101}\)