tính giá trị biểu thức
1/6 + 1/12 + 1/20 +...........+ 1/380
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`1/2 + 1/6 + 1/12 +1/20 + 1/30 + 1/42`
`=1/(1.2) + 1/(2.3) + 1/(3.4) + 1/(4.5) + 1/(5.6) + 1/(6.7)`
`=1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7`
`=1-1/7`
`=6/7`
a: \(=\dfrac{1}{2}\cdot\dfrac{3}{4}\cdot\dfrac{5}{6}=\dfrac{15}{48}=\dfrac{5}{16}\)
b: \(=\dfrac{2}{3}+\dfrac{12}{42}=\dfrac{2}{3}+\dfrac{2}{7}=\dfrac{20}{21}\)
c: \(=\dfrac{24}{5}\cdot\dfrac{5}{12}=2\)
d: \(=\dfrac{1}{9}+\dfrac{3}{4}=\dfrac{4+27}{36}=\dfrac{31}{36}\)
1: \(=\dfrac{3}{8}\cdot\dfrac{5}{6}=\dfrac{15}{24}=\dfrac{5}{8}\)
2: \(=\dfrac{2}{3}+\dfrac{12}{42}=\dfrac{2}{3}+\dfrac{2}{7}=\dfrac{14+6}{21}=\dfrac{20}{21}\)
3: \(=\dfrac{24}{5}\cdot\dfrac{5}{12}=2\)
4: \(=\dfrac{1}{3}+\dfrac{3}{4}=\dfrac{4+9}{12}=\dfrac{13}{12}\)
\(a,\dfrac{1}{2}:\dfrac{2}{4}:5\) -> chỉ có phép chia nên thực hiện từ trái sang phải :>
\(=1:5=\dfrac{1}{5}\)
\(b,\dfrac{2}{5}:12:\dfrac{4}{3}\) -> tương tự câu thứ nhất :>
\(=\dfrac{1}{30}:\dfrac{4}{3}=\dfrac{1}{40}\)
1)
\(\dfrac{1}{2}:\dfrac{2}{4}:\dfrac{5}{1}=\left(\dfrac{1}{2}.\dfrac{4}{2}\right).\dfrac{1}{5}=1.\dfrac{1}{5}=\dfrac{1}{5}\)
dấu chấm là dấu nhân á .
2)
\(\dfrac{2}{5}:\dfrac{12}{1}:\dfrac{4}{3}=\left(\dfrac{2}{5}.\dfrac{1}{12}\right).\dfrac{3}{4}=\dfrac{1}{30}.\dfrac{3}{4}=\dfrac{3}{120}=\dfrac{1}{40}\)
Chẳng ai quan tâm tới câu hỏi của tui. Buồn quá. Buồn không còn gì để tả. À mà có văn đâu mà tả? :))))
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+....+\dfrac{1}{19}-\dfrac{1}{20}=\dfrac{19}{20}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}=1-\dfrac{1}{6}=\dfrac{5}{6}\)
\(=>M=\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+...+\dfrac{1}{2009\cdot2010}\)
`M=1/2-1/3+1/3-1/4+1/4-1/5+...+1/2009-1/2010`
`M=1/2-1/2010`
`M=502/1005`
`A=1/2+1/6+1/12+1/20+1/30+...+1/9900`
`=1/(1xx2)+1/(2xx3)+1/(3xx4)+1/(4xx5)+1/(5xx6)+...+1/(99xx100)`
`=1/1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+...+1/99-1/100`
`=1/1-1/100`
`=100/100-1/100`
`=99/100`
\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{380}\)
\(=\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{19\cdot20}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{19}-\frac{1}{20}\)
\(=\frac{1}{2}-\frac{1}{20}=\frac{9}{20}\)
TL
\(\frac{1}{6}\)+\(\frac{1}{12}\)+\(\frac{1}{20}\)+....+\(\frac{1}{380}\)
=>\(\frac{1}{2.3}\)+\(\frac{1}{3.4}\)+\(\frac{1}{4.5}\)+...+\(\frac{1}{19.20}\)
=>\(\frac{1}{2}\)-\(\frac{1}{3}\)+\(\frac{1}{3}\)-\(\frac{1}{4}\)+\(\frac{1}{4}\)+....+\(\frac{1}{19}\)-\(\frac{1}{20}\)
=>\(\frac{1}{2}\)-\(\frac{1}{20}\)
=>\(\frac{9}{20}\)
HT