( Đề thi tuyển sinh vào 10 - Hà Nội)
Một mảnh vườn hình chữ nhật có diện tích là 720 m2. Nếu tăng chiều dài thêm 10m và giảm chiều rộng 6m thì diện tích mảnh vườn không đổi. Tính chiều dài và chiều rộng của mảnh vườn.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi chiều dài HCN là x (x>0,m)
Ta có chiều rộng HCN là \(\frac{720}{x}\left(m\right)\)
Theo bài ra ta có phương trình sau
\(\left(x+1\right)\left(\frac{720}{x}-6\right)=720\Leftrightarrow6x^2+60x-7200=0\Leftrightarrow x^2+10x-1200=0\)
\(\Delta=10^2-4.1.\left(-1200\right)=100+4800=4900>0\)
Tự thực hiện tiếp ....
Bài 4:
Gọi chiều rộng của mảnh vườn là x(m)(Điều kiện: x>0)
Chiều dài của mảnh vườn là: \(\dfrac{720}{x}\left(m\right)\)
Theo đề, ta có phương trình:
\(\left(x-6\right)\left(\dfrac{720}{x}+10\right)=720\)
\(\Leftrightarrow720+10x-\dfrac{4320}{x}-60=720\)
\(\Leftrightarrow10x-\dfrac{4320}{x}-60=0\)
\(\Leftrightarrow10x^2-60x-4320=0\)(1)
\(\Delta=\left(-60\right)^2-4\cdot10\cdot\left(-4320\right)=176400\)
Vì Δ>0 nên phương trình (1) có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{60-420}{20}=\dfrac{-360}{20}=-18\left(loại\right)\\x_2=\dfrac{60+420}{20}=\dfrac{480}{20}=24\left(nhận\right)\end{matrix}\right.\)
Vậy: Chiều rộng là 24m; Chiều dài là 30m
Gọi chiêu dài, chiều rộng lần lượtlà a,b
Theo đề, ta có: ab=720 và (a+6)(b-4)=ab
=>ab=720 và ab-4a+6b-24=ab
=>-4a+6b=24 và ab=720
=>2a-3b=-12 và ab=720
=>3b=2a+12
=>b=(2a+12)/3
ab=720
=>a*(2a+12)/3=720
=>(2a^2+12a)=2160
=>a=30
=>b=24
Gọi chiều dài mảnh vườn là x ( x > 0 )
=> Chiều rộng mảnh vườn = 720/x ( m )
Tăng chiều dài 6m và giảm chiều rộng 4m
=> Chiều dài mới = ( x + 6 )m và chiều rộng mới = ( 720/x - 4 )m
Khi đó diện tích mảnh vườn không đổi
=> Ta có phương trình : \(x\cdot\frac{720}{x}=\left(x+6\right)\left(\frac{720}{x}-4\right)\)( bạn tự giải nhé )
Giải phương trình thu được 2 nghiệm x1 = -36 ( loại ) và x2 = 30 ( nhận )
=> Chiều dài mảnh vườn = 30m
Chiều rộng mảnh vườn = 720/30 = 24m
chiều rộng là : 12 : 2 + 2= 8 ( m )
chiều dài là : 8x2 = 16 ( m )
diện tích : 16 x 8 = 128 ( m2 )
Nếu tăng chiều rộng 2m và giảm chiều dài 2m thì diện tích tăng 12m.Vậy chiều dài hơn chiều rộng 2m.
Chiều rộng hình chữ nhật là:
12 : 2 + 2 =8 (m)
Chiều dài hình chữ nhật là:
8 x 2 = 16 (m)
Diện tích hình chữ nhật là :
16 x 8 = 128(m²)
Đáp số :128m²
Gọi chiều dài,chiều rộng của mảnh vườn lần lượt là a,b(m) \(\left(a>b>0\right)\)
Theo đề: \(\left\{{}\begin{matrix}ab=80\\\left(a-2\right)\left(b+3\right)=80+32=112\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}ab=80\left(1\right)\\ab+3a-2b-6=112\left(2\right)\end{matrix}\right.\)
Thế (1) vào (2): \(\Rightarrow3a-2b=38\Rightarrow3a=2b+38\)
Ta có: \(3ab=3.80=240\Rightarrow b\left(2b+38\right)=240\Rightarrow2b^2+38b-240=0\)
\(\Rightarrow\left(b-5\right)\left(b+24\right)=0\) mà \(b>0\Rightarrow b=5\Rightarrow a=16\)
Bài giải
Gọi chiều dài là x(m)
Gọi chiều rộng là y(m)
Diện tích mảnh vườn ban đầu là: x.y=80 (m2) (1)
Diện tích mảnh vườn khi thay đổi chiều dài, chiều rộng là: (x-2).(y+3) = 112 (m2) (2)
từ (1) và (2) ta có hệ phương trình:
\(\left\{{}\begin{matrix}xy=80\\\left(x-2\right)\left(y+3\right)=112\end{matrix}\right.\)
từ (1) => x= \(\dfrac{80}{y}\)
Thay x= \(\dfrac{80}{y}\) vào (2) => x=16 ; y = 5
Vậy...............................
pải nói là hình chữ nhật hay hình j đó chứ ko ko vậy sao làm
Gọi chiều dài hình chữ nhật là x thì chiều rộng là \(\frac{720}{x}\left(x>0\right)\left(m\right)\)
\(\Leftrightarrow720-6x+\frac{7200}{x}-60=720\)
\(\Leftrightarrow6x^2-7200+60x=0\)
\(\Leftrightarrow x^2+10x-1200=0\)
\(\Leftrightarrow x^2+40x-30x-1200=0\)
\(\Leftrightarrow x\left(x+40\right)-30\left(x+40\right)=0\)
\(\Leftrightarrow\left(x+40\right)\left(x-30\right)=0\)
\(\Leftrightarrow x=30\)vì \(x>0\)
Vậy chiều dài là\(30m\), chiều rộng là \(\frac{720}{30}=24m\)
Chiều rộng là 24m
Chiều dài mảnh vườn là 30m